

Q1 2016

Contents:

1	Introduction
2	Example 1: Air to water heat pump not compliant with Ecodesign/ Energy
Lab	elling Directives. Listed on HARP
2.1	Heat pump parameters
2.2	Design details 4
2.3	Source of test data
2.4	Entry in Heat Pump tool
2.5	Entry in DEAP11
3	Example 2: Air to water heat pump compliant with Ecodesign/ Energy
Lab	elling Directive
3.1	Heat pump parameters
3.2	Design details
3.3	Source of test data
3.4	Entry in Heat Pump Tool
3.5	Entry in DEAP25
4 Lab	Example 3: Air to air heat pump compliant with Ecodesign/ Energy elling Directive
4.1	Heat pump parameters
4.2	Design details
4.3	Source of test data
4.4	Entry in Heat Pump Tool
4.5	Entry in DEAP
5	Example 4: Exhaust Air to water heat pump compliant with Ecodesign/
Ene	rgy Labelling Directive
5.1	Entry in Heat Pump Tool
5.2	Entry in DEAP
6	Example 5: Air to water heat pump compliant with Ecodesign/ Energy
Lab	elling Directive with backup heater
6.1	Design Details
6.2	Entry in Heat Pump Tool
6.3	Entry in DEAP
7	Example 6: Brine to water heat pump compliant with Ecodesign/ Energy
Lab	elling Directive with group heating scheme
7.1	Design Details
7.2	Source of test data
7.3	Entry in Heat Pump Tool40
7.4	Entry in DEAP40

1 Introduction

This document outlines a number of worked examples to demonstrate how the Heat Pump Tool (Version 1, Q1 2016) is used for entry of heat pumps in the Dwelling Energy Assessment Procedure (DEAP) for space and water heating.

The document must be read in conjunction with the following:

- DEAP Heat Pump Methodology Guidance
- Heat Pump Tool for DEAP
- DEAP Manual and Survey Guide
- Designer/Installer Sign Off sheet

The first two examples work through in detail how to enter heat pumps that are compliant and not compliant with the Ecodesign/ Energy Labelling directives.

The examples look at how data is sourced, how it is entered into the Heap Pump Tool and finally how the results are entered into the DEAP software.

The other examples demonstrate use of additional inputs, focusing on different scenarios from the first two examples such as different types of heat pump, the use of backup heaters, group heating schemes etc.

It should be noted that the following entries within the DEAP software are as per the existing methodology and therefore are not covered in these examples:

- Heating and Hot Water Controls
- Primary Circuit Losses
- Electricity from central heating pumps and fans
- Entries for all other heating system types
- All other aspects of DEAP not specific to heat pumps (e.g. building elements, lighting etc.)

2 Example 1: Air to water heat pump not compliant with Ecodesign/ Energy Labelling Directives. Listed on HARP.

2.1 Heat pump parameters

The first example is based on the following:

• Heat Pump installed in a dwelling prior to the 26th September 2015.

Under the Ecodesign and Energy Label directives there is no mandatory requirement for the heat pump to comply with the directives. However the Assessor should check with the heat pump manufacturer/ supplier that the heat pump is not compliant, as the heat pump model may be available on the market post 26th September 2015 and therefore would need to be compliant with the directives. The Assessor has obtained contact details of the system designer or installer from the client.

In this case the Assessor has received a copy of the designer/ installer sign off sheet from the installer confirming that the heat pump is not compliant with the Ecodesign / Energy Labelling directives and has been tested to EN 14511. The installer also confirmed that the heat pump is available on the HARP Database.

Model of the installed heat pump(s)			Ensure this is exact product model, including model		
	Model 123 r		name, number and qualifier where present.		
Type of Heat Pump	Air to Water	•			
	Brine to Water				
	Water to Water				
	Exhaust Air to Water				
	Air to Air				
	Brine to Air				
	Water to Air				
Is the Heat Pump compliant with Ecodesign Directive	No		Select Yes or No		
Is the Heat Pump compliant with Labelling Directive	No		Select Yes or No		
Space Heating Test Standard	I.S. EN 14511		Select Standard, I.S. EN 14825 or I.S. EN 14511		
Water Heating Test Standard			Select Standard, I.S. EN 16147 or I.S. EN 14511 or I.S. EN 255-3		
Is the heat pump listed on HARP	Yes		▼lect Yes or No		

Figure 1: Heat Pump Selection from Designer/Installer Sign off Sheet

2.2 Design details

The installer also confirmed the following as part of the sign off sheet:

4. Heat Emitter Design		
		1
Is there one or more radiators present		· · · · · · · · · · · · · · · · · · ·
	No	Select Yes or No
Is there one or more fan coil units present		
	No	Select Yes or No
Is there underfloor heating present		
	Yes	Select Yes or No
Is there warm air supply from the heat pump		
	No	Select Yes or No
Has a load / weather compensation been installed?		
		Select Yes or No
Provide details of zone, temperature and time control	2 space heating & 1 water zones with time	
installed?	and temperature control on each.	Input number of heating zones, thermostats, etc
Temperature (°C) of the water leaving the heat pump		
when supplying space heating based on full heating		
system design conditions and at the design external		
temperature?	35.00	Input temperature in degrees celcius

Figure 2: Heat Emitter Design from Sign off Sheet

5. Hot Water System		
Maximum flow temperature (°C) of the heat pump		
while providing hot water (by heat pump only)		Input temperature in degrees celcius, please
based on certified data	55.00	provide supporting documentation.
Type of DHW Store		Input the type of store present, no store, integral
	Separate Hot Water Storage	store or separate store
Is there an integral immersion or electric		
element present capable of providing hot water	Yes	Select Yes or No
		-

Figure 3: Hot Water System from Sign off Sheet

For existing dwellings it may not always be possible to get a Designer/ Installer Sign off Sheet. In those circumstances the Assessor should verify as much information as possible on site and follow the guidance set out in the DEAP Heat Pump Methodology guidance document.

2.3 Source of test data

For heat pumps that are not compliant with the Ecodesign/ Energy Labelling Directive, the Seasonal Performance Factor (SPF) can be sourced using the approach used in DEAP previously:

- HARP Database
- Certified or CE marked data from accredited laboratory with test certificates to IS EN 14511-2, IS EN 255-2 or EN 15879.
- Use of DEAP Table 4a defaults for heat pump efficiencies.

In this case the heat pump is listed on the HARP database as confirmed by the designer/ installer:

Туре:	Air to water		
Seasonal Performance Factor (SPF):	426%		
Rated capacity (kW)	6.85	EN test method used:	EN14511-2:2000(electric)
Tested by Body:	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Certificate No :	

Figure 4: HARP Database entry

2.4 Entry in Heat Pump tool

1. General Information

Using the heat pump tool, the Assessor completes the administration data including name of client, address of installation, MPRN, BER and Eircode numbers. As always, ensure that the test/HARP data matches the actual name of the heat pump in the dwelling being assessed.

2. Assessor Details

The Assessor completes own name and assessor number.

DEAP Heat Pump Tool Version 1	Colour Key User Input, only editable Constant Calculated Value		sea	SUSTAINABLE ENERGY AUTHORITY OF IRELAND
Publication Date: Q1 2016	User does not need to e	dit,		
Description:	Value:	Unit:	Guidance Notes:	
1. General information				
Name of owner/ client:	A Another			
Address of installation:	Main St, Dublin			
MPRN Number:	1234567890			
Eircode:	DUB 10W1			
BER Number:	8000012345			
2. Assessor Details				
Assessor Name:	J Bloggs			
Assessor Number:	123456			

Figure 5: Heat Pump Tool General Information

3. Building Data

The Assessor takes the Total heat loss (W/K) from the Building Elements - Heat loss results tab in the DEAP assessment and enters it in the tool.

	Building element characteristics
• •	Floors Roofs Walls Doors Windows Heat loss results
Start	Summary: Windows
Property and	Total area [m²] 68.73 Glazing ratio 0.103
assessor details	Heat loss [W/K] 53.28
Dimensions	Effective collecting area [m ²] 21.70
Ventilation	Summary: Building fabric
	Total element area 442.77 (includes glazed area) [m ²]
Building elements	Total heat loss via plane elements [W/K] 114
	Factor for thermal bridging [W/m³k] 0.0800
Water heating	Fabric heat loss [W/K]
Lighting and internal gains	Total heat loss [W/K] 285 Per m² [W/K m³] [1.16]
Net space heat demand	Part L 2011 conformity test results - building fabric only For details click here
Dist. system losses	Conformity with maximum average U-value requirements
and gains	Conformity with maximum U-value requirements

Figure 6: DEAP Software – Building Elements

The "Heat Loss Watts" figure in the heat pump calculator is the calculated heat loss from the dwelling. Where a designer/ installer is advising that the Design Flow Temperature is below the defaults built into the heat pump calculator, the BER Assessor must obtain and retain documentary evidence from the designer/installer to support the reduced flow temperature. The Assessor should use the heat loss figure in the heat pump calculator to compare to the documentary evidence provided by the designer/installer. Refer to the Heat Pump Methodology for guidance on the documentary evidence required to support a reduced design flow temperature.

In this example, the heat pump is serving a single dwelling; therefore "No" is selected for "Is the Heat Pump part of a Group Heating Scheme". Because it is not a group heating scheme, the fields for proportion of group heating provided by heat pump, floor area of dwelling and total floor area served by the heat pump are blacked out and do not need to be completed:

3. Building Data						
Total heat loss (W/K) taken from DEAP 285 Source from the Building Elements - Heat Loss Results W/K Tab in DEAP						
Heat Loss Watts	6175.95	Watts	Required Heating Capacity at design conditions.			
Is the Heat Pump part of a Group Heating Scheme	No					
Proportion of group heating provided by the heat pump	0%	%				
Floor Area of Dwelling	0	m²	Source from DEAP			
If Heat Pump serves a Group Heat Scheme, the total Floor Area served by Heat Pump is:	0	m²				

4. Heat Pump Data

The Assessor enters the Manufacturer and Model of the heat pump taken directly from Section 3 of the Designer Installer Sign Off Sheet, the type of heat pump taken directly from Section 3 of the Design Installer Sign Off Sheet, and specifies that the heat pump is supplying Space Heating and Domestic Hot Water taken directly from Section 2 of the Designer Installer Sign Off Sheet and the

standards the heat pump has been tested to, taken directly from Section 3 of the Design Installer Sign Off Sheet.

In this case the heat pump is tested to I.S.EN 14511; therefore the temperature control (also called capacity control), operation limit temperature and water operating limit temperature are blacked out as they are not required by the heat pump calculator.

Manufacturer of the installed heat pump(s)		Source from Ecodesign Data or HARP Database or in
	Heat Pump Manu	compliance with DEAP methodology
Model of the installed heat pump(s)		Source from Ecodesign Data or HARP Database or in
	Model 123	compliance with DEAP methodology
Type of heat pump		Source from Ecodesign Data or HARP Database or in
	Air to Water	compliance with DEAP methodology
Temperature Control		
	Variable Outlet	Source from Ecodesign Data
Does the installation provide:		Source from Designer/Installer sign off sheet or site
	Space heating and Domestic Hot Water	evidence without Ecodesign
Space Heating Test Standard		
	I.S. EN 14511	Source from Ecodesign Data or HARP Database
Water Heating Test Standard		
	I.S. EN 14511	Source from Ecodesign Data or HARP Database
Operation Limit Temperature (TOL)	-8.00 °C	Source from Ecodesign Data

Figure 8: Heat Pump Tool – Heat pump Data

5. Heating

In this case the heat pump is tested to I.S.EN 14511, therefore the "Annual Space heating requirement", "Is there a fixed secondary heater present", "Is there a CHP present", "Fraction of main space and water heating from CHP" and "Annual space heating provided by heat pump" fields are blacked out as they are not required by the heat pump calculator.

The "Design outdoor temperature" is a constant.

5. Heating					
			Source from the Distribution system loss and gains		
Annual space heating requirement taken from DEAP		kWh	tab in DEAP		
	No		Details on CHP and secondary heating must match		
Is there a fixed secondary heater present?			the DEAP energy requirements entries.		
			Details on CHP and secondary heating must match		
Is there a CHP present?			the DEAP energy requirements entries.		
			Details on CHP and secondary heating must match		
Fraction of main space and water heating from CHP			the DEAP energy requirements entries.		
Annual space heating provided by Heat Pump	28745	kWh			
Design Outdoor Temperature	-3	°C	Based on CIBSE Guide A Section 2		
-			Source from Net Space Heat Demand "Required		
			mean internal temperature during heating hours		
Indoor Design Temperature (Mean Internal Temperature)	18.67	°C	degC"		

Figure 9: Heat Pump Tool – Heating

The Indoor Design Temperature is taken from "Net Space Heat Demand – Required mean internal temperature during heating hours" in DEAP:

	Net space heat demand			
	Required internal temperature			
Start	Required temperature for living area during heating hours [*C]	21		
Property and assessor details	Required temperature for rest of dwelling during heating hours ['C]	18		
	Living area percentage [%]	22.38		
Dimensions	Required mean internal temperature during heating hours ['C]	18.67	$\mathbf{>}$	
Ventilation	Internal heat capacity	\sim		
Building elements	Thermal mass category of dwelling	Low		
		Utilisation factor	Intermittent heating	
	Internal heat capacity of dwelling [MJ/K per m ² floor area]	0.07	0.07	
Water heating	Internal heat capacity of dwelling [MJ/K]	17	17	
Lighting and internal				
gains	For calculation of adjusted temperature due to intermittent heating			
Net space heat	Length of one unheated period [h]	8		
demand Dist_system losses	Number of unheated periods per week	14		

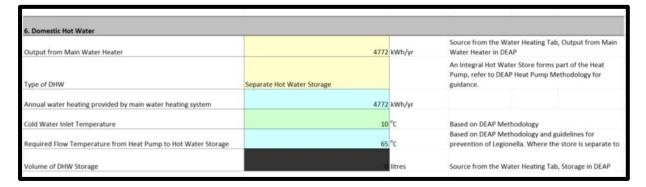
Figure 10: DEAP Software – Net space heat demand

The Assessor selects the type of heat emitters present in the dwelling; this is taken from Section 4 of the Designer Installer Sheet and confirmed by the assessor on site. Based on the heat emitters present, the software calculates a "default supply temperature". The Assessor can enter a design flow temperature below the default, taken from Section 4 of the Design Installer Sign Off Sheet but must have adequate documentary evidence to support the reduced temperature as outlined above. Please refer to DEAP Heat Pump Methodology for guidance on the evidence required.

Heat emission type served by heat pump within the dwelling:	Select all that apply:				
Heat emission type served by heat pump within the dwelling.					
1 or more Radiators	No				
1 or more Fan Coil Units	No		Default Supply Temperature		
Underfloor Heating	Yes		35	°c	Based on SAP input parameters.
Air	No				
Design Flow Temperature Use "Default Supply Temperature" unless other evidence					
available	35	°c			
			Source from SAP		
Exponent n, characterising type of emission system	1.2		Methodology for		
Emitter Temperature Drop	5	°c	Source from SAP Methodology for		
Return Temperature at design conditions	30				
No of Hrs per Day Heat Pump in Operation	16	hrs	Source from Designer/ Installer sign off sheet, default is DEAP heating schedule which is 8 hrs a day		
no or my per buy near ramp in operation	10		is been nearing	senceate which	is o mis a day
Cut-out hours	8				

Figure 11: Heat Pump Tool – Heat Emitters

Note the "No of hours per day heat pump is in operation" and back up heater data is blacked out as it is not used in the calculator for EN 14511 based calculations.


6. Domestic Hot Water

The Assessor takes the "Output from the Main water heater" from the Water Heating Tab in DEAP and enters it in the Heat Pump calculator.

Lighting and internal gains	Storage loss [kWh/y]	442	Storage loss adjusted for dedicated solar storage [kWh/y]	442
Net space heat	Primary circuit loss type	Boiler with insulated prima	ary pipework and with cylinder thermostat	•
demand Dist. system losses	Primary circuit loss [kWh/y]	360	Primary circuit loss adjusted for occupancy [kWh/y]	447
and gains	Output from main water heater [kWh/y]	4772	Heat gains from water heating system [W]	215
Energy requirements Summer internal	Annual heat gains from water heating system [kWh/y]	1881	Output from supplementary heater [kWh/y]	0

Figure 12: DEAP Software – Water Heating

The Assessor also selects the "Type of DHW" based on the installed system's hot water storage and section 5 of the Designer Installer Sign Off Sheet. The "Volume of DHW Storage" is blacked out as it is not used in the calculator for EN 14511 based calculations.

7. Product Performance Data

As the Space Heating and Water Heating test standards are EN 14511, the data associated with EN 14825, EN 16147 and EN 255-3 are blacked out.

Based on the data available, the Assessor enters the SPF in compliance with DEAP Methodology, as taken from HARP in this instance.

The installer has also confirmed the presence of load and weather compensation from Section 4 of the Designer Installer Sign Off Sheet and an integral immersion from Section 5 the Designer Installer Sign Off Sheet. Finally the maximum flow temperature of the heat pump is 55° C as detailed in Figure 3 and taken from Section 5 of the Designer Installer Sign Off Sheet. As the maximum flow temperature is 55° C, "No" is selected for can the heat pump reach a flow temperature of >= 65° C.

Test Conditions EN 14511-2				
Is the Heat Pump Listed on HARP	Yes			
			compliance with DEAP methodology or from DEAP	
Enter SPF based on DEAP Methodology/ HARP	4.26	kW/kW	table 4a defaults	
			Source from Designer/Installer sign off sheet or site	
Is there load or weather compensation present?	Yes		evidence	
			Source from Designer/Installer sign off sheet or site	
Does the heat pump have an Integral Immersion	Yes		evidence	
			dataplates or accredited test data for the heat pump	
Does heat pump reach a flow temperature of >=65oC	No		in question.	

Figure 14: Heat Pump Tool – Test Conditions

8. Results

The Heat Pump Calculator then calculates the efficiency of the Main Heating and Main Hot Water systems and the efficiency adjustment factors for entry in the assessment in the DEAP software.

The tool also calculates the "Additional Renewable Contribution from the Heat Pump". This is renewable energy that is supplied by the heat pump but not accounted for in the DEAP software. The Heat Pump Calculator combines the efficiency of the Heat Pump and backup heater, in this case electric immersion giving a combined efficiency of 162% that is entered into the DEAP tool. Therefore DEAP would not consider the water heater (including heat pump and immersion) to be renewable. The heat pump calculator determines the renewable proportion attributable to the heat pump itself and this is added to the DEAP assessment.

8. Results		
Results		
Efficiency of Main Heating System	426% %	Enter this in DEAP: energy requirements: space heating
Efficiency Adjustment Factor - Main Heating	1.00	Enter this in DEAP: energy requirements: space heating
Efficiency of Main Hot Water System	162% %	Enter this in DEAP: energy requirements: water heating
Efficiency Adjustment Factor - Main Hot Water	1.00	Enter this in DEAP: energy requirements: water heating
		Enter this in DEAP: energy requirements: fuel data: Renewable Energy: Energy Saved or Produced: Renewable Thermal: Part L Total contribution (kWh/yr). Note: this is only applied to Part L renewable
Additional Renewable Contribution from Heat Pump	985.77 kWh/ye	ear contribution in new dwelling assessments.

Figure 15: Heat Pump Tool - Results

2.5 Entry in DEAP

The "Efficiency of the Main Heating System" and "Efficiency Adjustment Factor – Main Heating" are entered under the Energy Requirements – Space heating tab in DEAP.

	Energy requirements	
Start	Select space heating type: Individual	
	Space heating Water heating Pumps, fans and electric kee	p-hot facility Fuel data
Property and assessor details	Main space heating system	
	Efficiency of main heating system [%]	426
Dimensions	Manufacturer name	Heat Pump Manu
Ventilation	Model name	Model 123
Building elements	Efficiency adjustment factor	
	Adjusted efficiency of main heating system [%]	426
Water heating	Energy required for main space heating system [kWh/y]	1965
Liebting and internal		
Lighting and internal gains	Secondary space heating system	
Net space heat	Fraction of heat from secondary/supplementary System	0.00
demand	Efficiency of secondary/supplementary System [%]	0.00
Dist. system losses and gains		
	Secondary space heating manufacturer name	
Energy requirements	Secondary space heating model name	

Figure 16: DEAP Software – Energy Requirements – Space heating

The "Efficiency of the Main Water Heating System" and "Efficiency Adjustment Factor – Main Hot Water" are entered under the Energy Requirements – Water heating tab in DEAP.

	Energy requirements
Start	Select space heating type: Individual
	Space heating Water heating Pumps, fans and electric keep-hot facility Fuel data
Property and assessor details	
	Efficiency of main water heating system [%]
Dimensions	Manufacturer name Heat Pump Manu
Ventilation	Model name Model 123
Building elements	Efficiency adjustment factor 1
	Adjusted efficiency of main water heating system [%] 162
Water heating	Energy required for main water heater [kWh/y] 2946
Lighting and internal gains	Energy required for secondary water heater [kWh/y] 0
Net space heat demand	
Dist. system losses and gains	
Energy requirements	

Figure 17: DEAP Software – Energy Requirements – Water heating

The "Additional Renewable Contribution" is entered under the Energy Requirements – Fuel Data – Renewable Energy in DEAP under the Part L total contribution **only**. The type of renewable energy is Renewable Thermal.

	Energy requirements									
Start	Select space heating type:	ndividual	•							
	Space heating Water heating	g Pumps	s, fans and electric keep-h	not facility F	Fuel data					
Property and assessor details			Fuel						Primary energy conversion factor	CO2 emission factor [kg/kWh]
Dimensions	Main space heating system		Electricity		•]			2.37	0.522
Ventilation	Secondary space heating syst	em	None		•]			0.00	0.000
Ventiliation	Main water heating system		Electricity		•]			2.37	0.522
Building elements	Supplementary water heating	system	None		•	j			0.00	0.000
	Pumps, fans								2.37	0.522
Water heating	Energy for lighting								2.37	0.522
Lighting and internal gains	Renewable and energy s	-	chnologies jy/Comment	Tį	ype		Part L total contribution [kWh/y]	Delivered energy [kWh/y]	Primary energy conversion factor	CO2 emission factor [kg/kWh]
Net space heat demand		Add Part	L Contribution from HP	Renewab	le Thermal	(985.8		0.00	0.000
Dist. system losses and gains	Energy consumed						\sim	0.000	0.00	0.000
	Renewable energy 2									
Energy requirements	Energy produced or saved			Renewab	le Thermal	•	0.000	0.000	0.00	0.000
	Energy consumed			1				0.000	0.00	0.000

Figure 18: DEAP Software – Energy Requirements – Fuel Data

3 Example 2: Air to water heat pump compliant with Ecodesign/Energy Labelling Directive

3.1 Heat pump parameters

The second example is based on the following:

• Heat Pump installed in a dwelling after the 26th September 2015 and compliant with the Ecodesign/ Energy Labelling Directives. Provides space and water heating.

The Ecodesign directive requires that technical data is made publicly available declaring the test data for the heat pump to EN 14825 and EN 16147.

The Assessor received the following details in the Designer/Installer Sign off sheet.

2. Purpose of installation		
Does the installation provide:	Space Heating	
(Tick applicable box)	Domestic Hot Water	

Figure 19: Purpose of Installation from Sign off Sheet

3. Heat pump selection		
Manufacturer of the installed heat pump(s)	Heat Pump Manufacturer	Ensure this is exact product manufacturer name.
Model of the installed heat pump(s)	Heat Pump 123	Ensure this is exact product model, including model name, number and qualifier where present.
Type of Heat Pump	Air to Water	
	Brine to Water	
	Water to Water	
	Exhaust Air to Water	
	Air to Air	
	Brine to Air	
	Water to Air	
Date of Installation	01/12/2015	Insert date heat pump was installed
Is the Heat Pump compliant with Ecodesign Directive	Yes	Select Yes or No
Is the Heat Pump compliant with Labelling Directive	Yes	Select Yes or No
Space Heating Test Standard	I.S. EN 14825	Select Standard, I.S. EN 14825 or I.S. EN 14511
Water Heating Test Standard	I.S. EN 16147	Select Standard, I.S. EN 16147 or I.S. EN 14511 or I.S. EN 255-3
Is the heat pump listed on HARP	No	Select Yes or No
No of Hours per Day Heat Pump has been designed to run	16	Select 8,16 or 24 which most represent the design

Figure 20 Heat Pump Selection from Sign off Sheet

3.2 Design details

The designer/ installer also confirmed the following as part of the sign off sheet; this was verified by the Assessor on site.

Firstly the assessor noted that the designer/ installer had advised that the heat pump was designed to meet the full space heating and hot water demand (Section 3 of the Designer Installer Sign Off Sheet). The assessor confirmed this on site as no backup heaters were installed. Note: The Backup heaters identified in Section 3 of the Designer Installer Sign Off Sheet are heaters other than the heat pump itself, for example boilers. Backup water heaters which are part of the heat pump, i.e. integral immersions are identified in Section 5 of the Designer Installer Sign Off Sheet.

Does the heat pump provide a full or partial space		
heating service?	Full	Select Full, Partial or None
If partial, is there a back up space heater present to		
supplement the Heat Pump?	No	Select Yes or No
Outline type of backup space heater and associated		
fuel		Enter Type and Fuel of Heater
Does the heat pump provide full or partial hot water		
heating?	Full	Select Full, Partial or None
If partial, is there a back up water heater present to		
supplement the Heat Pump?	No	Select Yes or No
Outline type of backup water heater and associated		
fuel		Enter Type and Fuel of Heater

Figure 21: Heat Pump Selection from Sign off Sheet

The dwelling is served by a combination of radiators and underfloor heating (taken from Section 4 of the Designer Installer Sign Off Sheet), with the design supply temperature being 45°C with the following controls.

4. Heat Emitter Design		
Is there one or more radiators present		
	Yes	Select Yes or No
Is there one or more fan coil units present		
	No	Select Yes or No
Is there underfloor heating present		
	Yes	Select Yes or No
Is there warm air supply from the heat pump		
	No	Select Yes or No
Has a load / weather compensation been installed?		
	Yes	Select Yes or No
Provide details of zone, temperature and time control	2 space heating & 1 water zones with time	
installed?	and temperature control on each.	Input number of heating zones, thermostats, etc
Temperature (°C) of the water leaving the heat pump		
when supplying space heating based on full heating		
system design conditions and at the design external		
temperature?	45.00	Input temperature in degrees celcius

Figure 22: Heat Emitter Design from Sign off Sheet

The heat pump was tested at a reference temperature of 55°C for water heating and had a separate hot water store (taken from Section 5 of the Designer Installer Sign Off Sheet).

5. Hot Water System		
Maximum flow temperature (°C) of the heat pump		
while providing hot water (by heat pump only)		Input temperature in degrees celcius, please
based on certified data	55.00	provide supporting documentation.
Type of DHW Store		Input the type of store present, no store, integral
	Separate Hot Water Storage	store or separate store
Is there an integral immersion or electric		
element present capable of providing hot water	Yes	Select Yes or No

Figure 23: Hot Water System from Sign off Sheet

3.3 Source of test data

For heat pumps compliant with the Ecodesign directive, technical documentation outlining the declared test data must be made available to the public to comply with the directive.

Additional test data may be sourced that is in compliance with EN 14825 and EN 16147 from manufacturer's literature referencing the relevant regulations/ directives, CE marked data or accredited test data as detailed in the heat pump guidance document. The following data is an excerpt from a publicly available technical data declaration in compliance with the Ecodesign directive referencing EN 14825 test data.

			955					
Air-to-water heat pump:				yes			0.	
Water-to-water heat pump:			no					
Brine-to-water heat pump:			no					
Low-temperature heat pump:				no				
Equipped with a supplementary h	eater:			yes				
Heat pump combination heater:				no				
Parameters shall be declared for				medium-temperature application.				
Parameters shall be declared for				average climate conditions.				
ltem	Symbol	Value	Unit	Item	Symbol	Value	Unit	
Rated heat output (*)	Prated	13.5	kW	Seasonal space heating energy efficiency	ηs	125	%	
Declared capacity for heating for part load at indoor			Declared coefficient of performance or primary energy ratio for					
temperature 20 °C and outdoor te	mperature 1	[]		part load at indoor temperature 20 %	C and outdoo	ortempera	ture Tj	
Tj =- 7 ℃	Fdh	11.9	kW	Tj = - 7 °C	COPd	1.83		
Degradation co-efficient (**)	Cdh	0.99	100				92 12	
Tj = + 2 °C	Fdh	7.2	kW	Tj = + 2 °C	COPd	3.18	11-11	
Degradation co-efficient (**)	Cdh	0.98	-					
Tj = + 7 °C	Fdh	5.9	kW	Tj = + 7 °C	COPd	4.27	120	
Degradation co-efficient (**)	Cdh	0.98	20				50 50	
Tj = +12 °C	Fdh	7.4	kW	Tj = +12 °C	COPd	6.32	1.00	
Degradation co-efficient (**)	Cdh	0.98	23		5			
Tj = bivalent temperature	Fdh	11.9	kW	Tj = bivalent temperature	COPd	1.83	2) 10340	
Tj = operation limit temperature	Fdh	9.3	kW	Tj = operation limit temperature	COPd	1.70	18.00	
Tj = − 15 °C (if TOL < − 20 °C)	Fdh	(e	kW	Tj = − 15 °C (if TOL < − 20 °C)	COPd	1.01		
Bivalent temperature	Tbiv	-7	°C	Operation limit temperature	TOL	-15	°C	
				Heating water operating limit temperature	WTOL	60	°C	

Other items							
Capacity control		variable		Rated air flow rate, outdoors	-	8400	m³/h
Sound power level, indoors/outdoors	L _{WA}	45/78	dBA				
Annual energy consumption	Q_{HE}	8541	kWh				

For heat pump combination heater:							
Declared load profile		L		Water heating energy efficiency	ηwh	99	%
Daily electricity consumption	Qelec	5.000	kW/h				
Annual electricity consumption	AEC	1109	kW/h				

Figure 24: Example of Technical Data in compliance with Ecodesign Directive

3.4 Entry in Heat Pump Tool

1. General Information

Using the heat pump tool, the Assessor completes the administration data including name of client, address of installation, MPRN, BER and Eircode numbers, as detailed in Example 1.

2. Assessor Details

The Assessor completes own name and Assessor number, as detailed in Example 1.

3. Building Data

The Assessor takes the Total heat loss (W/K) from the Building Elements - Heat loss results tab in the DEAP assessment and enters it in the heat pump calculator. Refer to Figure 6 showing how this data is sourced. In this example the Total Heat Loss is 321 W/K.

In this case the heat pump is serving a single dwelling; therefore "No" is selected for "Is the Heat Pump part of a Group Heating Scheme".

Total heat loss (W/K) taken from DEAP	321		Source from the Building	Elements - Heat Loss
		w/k	Results Tab in DEAP	
Heat Loss Watts	6875.82			
		Watts	Based on W/K by the Te	mperature Difference
Is the Heat Pump part of a Group Heating Scheme	No			
Proportion of group heating provided by the heat pump	50%	%		
Floor Area of Dwelling	50	m²	Source from DEAP	
If Heat Pump serves a Group Heat Scheme, the total Floor Area served by Heat Pump is:	100	m²		

Figure 25: Heat Pump Tool – Building Data

4. Heat Pump Data

The Assessor enters the Manufacturer and Model of the heat pump, the type of heat pump, specifies that the heat pump is supplying Space Heating and Domestic Hot Water along with the standards the heat pump has been tested to, all taken from Section 2 and 3 of the Designer Installer Sign Off Sheet.

The temperature control (also called capacity control), operation limit temperature and water operating limit temperature are taken directly from the test data, refer to Figure 24.

Manufacturer of the installed heat pump(s)	Heat Pump Manufacturer		Source from Ecodesign Data or HARP Database or in compliance with DEAP methodology
Model of the installed heat pump(s)	Heat Pump 123		Source from Ecodesign Data or HARP Database or in compliance with DEAP methodology
Type of heat pump	Air to Water		Source from Ecodesign Data or HARP Database or in compliance with DEAP methodology
Temperature Control			
(refered to as Capacity Control in Ecodesign Standard Template)	Variable Outlet		Source from Ecodesign Data
Does the installation provide:	Space heating and Domestic Hot Water		Source from Designer/Installer sign off sheet or site evidence without Ecodesign
Space Heating Test Standard	LS. EN 14825		Source from Ecodesign Data or HARP Database
Water Heating Test Standard	I.S. EN 16147		Source from Ecodesign Data or HARP Database
Operation Limit Temperature (TOL)	-15.00	°C	Source from Ecodesign Data
Heating water operating limit temperature (WTOL)	60.00	°c	Source from Ecodesign Data

Figure 26: Heat Pump Tool – Heat Pump Data

5. Heating

The Annual Space heating requirement is taken from DEAP.

assessor details Dimensions Ventilation Building elements	Mean internal temperature during heating hours ['C] 18.42 Mean internal temperature ['C] 17.12 Additional heat emission due to non-ideal control and responsiveness [k'Wh/y] 609 Gross heat emission to heated space [kWh/y] 8415 Pumps and fans 609	
Water heating Lighting and internal gains Net space heat demand Dist. system losses and gains Energy requirements Summer internal temperature	Number present Boiler controlled by room themostat Inside dwelling Total electricity consumption [kWh/y] Heat gain [W] Central heating pump 1 Yes • 130 10 Oil boiler pump 0 • 0 0 Gas boiler flue fan 1 No • 0 0 Warm air heating system or fan coil radiators present? No • 0 0 Gains from fans and pumps associated with space heating system [kWh/y] 58 175 10 Average utilisation factor October to May 0.74 0.74 13 10	
Results	Net heat emission to heated space [kWh/y] 8372 Heat Emitter Is there underfloor heating in the ground floor? Fraction of heating system output from ground floor 0.4 Additional heat loss via envelope element 0 Annual space heating requirement [kWh/y] 8372	

Figure 27: DEAP Software – Dist. System losses and gains

For this dwelling there is no secondary heater or CHP present. The presence of a secondary heater/ CHP is determined based on the DEAP methodology as normal.

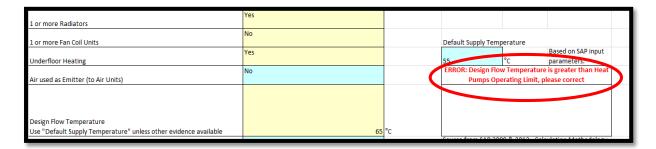
The Indoor Design Temperature is taken from DEAP, as per Figure 10. In this case the Indoor Design Temperature is 18.42°C.

			Source from the Distribution system loss and gains
Annual space heating requirement taken from DEAP	837	2 kWh	tab in DEAP
	No		Details on CHP and secondary heating must match
s there a fixed secondary heater present?			the DEAP energy requirements entries.
	No		Details on CHP and secondary heating must match
s there a CHP present?			the DEAP energy requirements entries.
	0.1		Details on CHP and secondary heating must match
Fraction of main space and water heating from CHP			the DEAP energy requirements entries.
Annual space heating provided by Heat Pump	837	2 kWh	
Design Outdoor Temperature		3 °C	Based on CIBSE Guide A Section 2
			Source from Net Space Heat Demand "Required
ndoor Design Temperature (Mean Internal Temperature)	18.4	2 °C	mean internal temperature during heating hours

Figure 28: Heat Pump Calculator – Heating 1

The Assessor selects the type of heat emitters present within the dwelling. Based on Section 4 of the sign off sheet, 1 or more radiators and Underfloor Heating is present and are also identified by the Assessor during DEAP survey. Refer to Figure 22 for an example.

Note: As with all DEAP inputs, the actual data observed on site takes precedence. Therefore if the Assessor observes data on site that contradicts the Designer/ Installer sign off sheet, the Assessor must base the BER on what was observed on site.


The software calculates a default supply temperature of 55°C as there are radiators present. The designer/ installer sign off sheet states that Design Flow Temperature is 45°C. When the Assessor enters this in the tool, a warning appears stating "As Design Flow Temperature is less than Default, please ensure that documentary evidence is available to support it". The heat pump guidance document details the evidence required.

The designer/ installer in Section 3 of the sign off sheet has confirmed the system operates 16 hours per day. This is the number of hours the heat pump can be activated by thermostatic/ load control devices to maintain internal temperature and is entered in the tool as follows:

Heat emission type served by heat pump within the dwelling:					
	Yes				
1 or more Radiators					
	No				
1 or more Fan Coil Units			Default Supply	Temperature	
	Yes				
Underfloor Heating			55	°C	
	No				
Air					
Design Flow Temperature			WARNING: As Design Flow Temperature is less		Cemperature is less
Use "Default Supply Temperature" unless other evidence			than Default,	please ensure	that documentary
available	45	°C		ce is available	
			Source from SAF		
Exponent n, characterising type of emission system	1.2				iven heat pumps
			Source from SAF		
Emitter Temperature Drop	10	°C	Methodology fo	r electrically d	iven heat pumps
	25				
Return Temperature at design conditions	35		Source from De	signer/Installe	r sign off sheet,
No of the new Devictory Device in Operation	10	hrs		-	-
No of Hrs per Day Heat Pump in Operation	16	nis	default IS DEAP	nearing sched	ule which is 8 hrs a
Cut-out hours	8				

Figure 29: Heat Pump Calculator – Heating 2

Note: if the design flow temperature is greater than the Water Operating Limit Temperature (WTOL= 60° C in this case), an error message will be displayed and the Heat Pump tool will not produce a result:

Figure 30: Heat Pump Calculator – Heating 3

The designer/ installer has also confirmed that no backup heater is installed in Section 3 of the Designer Installer Sign Off Sheet: refer to Figure 21. The Assessor selects "No" for the backup heaters. This blacks out the fuel and efficiency for backup heaters. If the heat pump does not meet the demand of the space heating or hot water, direct electrical heating is assumed as the backup.

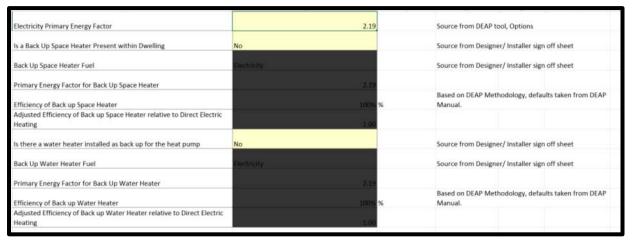


Figure 31: Heat Pump Calculator – Heating 4

6. Domestic Hot Water

Similar to Figure 12, the Assessor takes the "Output from the Main water heater" from the Water Heating Tab in DEAP and enters it in the Heat Pump calculator. In this case the Output from the Main Water Heater is 4772 kWh/yr.

The Assessor also selects the Type of DHW and details of the volume of storage taken from DEAP.

	Water heating			
Start	Storage losses			
Property and	Is hot water storage indoors or i	n group besting scheme?	Yes 💌	
assessor details	Water storage volume [Litres]	300	Temperature factor unadjusted	0.60 🔎
Dimensiona	ls manufacturer's declared loss factor available?		T . F . N .	0.00
Dimensions		Yes 🔻	Temperature factor multiplier	0.90
Ventilation	Table 2 lookup values	Type of water storage: Cyl Is there a cylinder thermos Is cylinder heated by boile		estic hot water?:
Building elements	Loss factor available			
	Manufacturer name and model	Manu 2		
Water heating	Declared loss factor [kWh/day]	2.240		
Lighting and internal				
gains	Storage loss and energy output			
Net space heat demand	Storage loss [kWh/y]	442	Storage loss adjusted for dedicated solar storage [kWh/y]	442
Dist. system losses and gains	Primary circuit loss type	Boiler with insulated prima	ry pipework and with cylinder thermostat	•
Energy requirements	Primary circuit loss [kWh/y]	360	Primary circuit loss adjusted for occupancy [kWh/y]	447
Summer internal	Output from main water heater [kWh/y]	4772	Heat gains from water heating system [W]	215
temperature				

Figure 32: DEAP Software – Water heating

6. Domestic Hot Water					
Output from Main Water Heater	4772	kWh/yr	Source from the Water Heating Tab, Output from M Water Heater in DEAP		, Output from Main
			An Integral Hot Water Store forms part of the Heat Pump, refer to DEAP Heat Pump Methodology for		
Type of DHW	Separate Hot Water Storage		guidance.		
Annual water heating provided by main water heating system	4772	kWh/yr			
Cold Water Inlet Temperature	10	°c	Based on DEAP Methodology		
Required Flow Temperature from Heat Pump to Hot Water Storage	65	°C	Based on DEAP Methodology and guidelines for prevention of Legionella. Where the store is separate to		
Volume of DHW Storage	300	litres	Source from the Wa	ter Heating Tab	, Storage in DEAP

Figure 33: Heat Pump Calculator – Domestic Hot Water

7. Product Performance Data

As the Space Heating test standard is EN 14825 and Water Heating Test Standard is EN 16147, the entries associated with EN 14511 and EN 255-3 are blacked out in the calculator.

The test data associated with EN 14825 are taken directly from the publicly available technical data declarations in compliance with the Ecodesign directive or directly from manufacturer's literature referencing the relevant directives/ regulations and EN 14825 accredited/CE marked test data. Refer to Figure 24 for an example of data following the Ecodesign directive.

In this case only the mandatory test data High Temperature (55°C) was available; therefore "No" was selected for Low, Medium and Very High test points.

Note: The Ecodesign Directive requires that parameters must be provided for "Medium Temperature Applications" which is defined in the Ecodesign Directive as an indoor heat exchanger outlet temperature of 55°C and therefore relates to High Temperature test points in EN 14825.

7. Product Performance Data			
	High Temperature		
	Data is mandatory requirement under		
	Ecodesign Directive (Note its referred to as		
	Medium Temperature Application in Ecodesign		Source from Ecodesign Data or accredited tests to
Test Conditions EN 14825:2013	directive)		EN14825
			Source from Ecodesign Data or accredited tests to
Additional Test Points available at:	Low Temperature	No	EN14825
			Source from Ecodesign Data or accredited tests to
	Medium Temperature		EN14825
			Source from Ecodesign Data or accredited tests to
	Very High Temperature	No	EN14825
Maximum Te	st Temperature allowed for in EN14825 testing	55	

Figure 34: Heat Pump Tool – Product Performance Data EN 14825 -1

Note the Design Flow Temperature entered in the calculator must be less that the Maximum Test Temperature. Referring to Figure 34, the Maximum Test Temperature is 55°C, therefore if the design flow temperature is greater than 55°C an error will be displayed in the calculator and no result will be produced.

By selecting "No" for the other test points (Low, Medium, Very High), the input data associated with them is blacked out. The entries below are taken directly from Figure 24.

	Test Conditions EN 14825:2013	A (88%)	B (54%)	C (35%)	D (15%)	E* (100%)
Low Temperature Application (35°C)	Source	A-7	A2	А7	A12	A-15
	Sink					
EN 14825:2013 - Table 12 (ASHP) or Table 24 (GSHP)	Heating Capacity (kW)					
	Coefficient of Performance (kW/kW)					0.00
Mid Temperature Application (<mark>45°C</mark>)	Source	A-7	A2	A7	A12	A-15
	Sink					
EN 14825:2013 - Table 6 (AAHP), Table 9 (GAHP), Table 15 (ASHP) or Table 27 (GSHP)	Heating Capacity (kW)					
	Coefficient of Performance (kW/kW)					
High Temperature Application (55°C)	Source	A-7	A2	Α7	A12	A-15
	Sink	W52	W42	W36	W30	W55
EN 14825:2013 - Table 18 (ASHP) or Table 30 (GSHP)	Heating Capacity (kW)	11.90	7.20	5.90	7.40	9.30
	Coefficient of Performance (kW/kW)	1.83	3.18	4.27	6.32	1.70
Very High Temperature Application (65°C)	Source	A-7		Α7	A12	A-15

Figure 35: Heat Pump Tool – Product Performance Data EN 14825 -2

The source and sink temperatures displayed are based on the type of heat pump and the temperature control (also called capacity control). The same methodology would be used for Brine to Water, Water to Water and Exhaust Air to Water heat pumps with the source data adjusting accordingly.

Similarly the test data associated with EN 16147 is taken directly from the publicly available technical data declared in compliance with the Ecodesign directive or directly from EN 16147 accredited/CE marked test data. In this case the assessor has sourced data from Ecodesign technical data sheet in compliance with the directive. Referring to Figure 24, the water heating energy efficiency and Declared Load Profile were obtained directly from the Ecodesign technical data sheet.

The assessor has also received data from the manufacturer stating that the capacity of the heat pump is 5kW, the reference hot water temperature is 55°C and the Standby Heat Loss is 0.6 kWh/day. Note that the "standby heat loss" and "volume of DHW accounted for in test" shown below are the figures in the EN16147 data.

Test Conditions EN 16147		
Source of data	Water heating energy efficiency, ŋwh	Source from Ecodesign Data or accredited tests to EN 16147
Water heating energy efficiency, ŋwh	99 %	Source from Ecodesign Data or accredited tests to EN 16147
Equivalent Coefficient of Performance	2.475 kW/kW	
Reference Hot Water Temperature	55 °C	Source from Ecodesign Data or accredited tests to EN 16147, set at 40°C if unknown.
Required Source Temperature	7 ℃	Based on Table 5 of EN 16147
Capacity of Heat Pump	SkW	Source from Ecodesign Data, manufacturers data or accredited tests to EN 16147
Declared Load Profile	L	Source from Ecodesign Data, manufacturers data or accredited tests to EN 16147
Standby Heat Loss	0.6 kWh/day	Source from Ecodesign Data or accredited tests to EN 16147, set as 0 if unknown
Volume of DHW accounted for in test	150 litre	Source from Ecodesign Data or accredited tests to EN 16147

Figure 36: Heat Pump Tool – Product Performance Data EN 16147

Note: As per the Ecodesign Directive guidance, the Declared Load Profile must comply with the volume used in the test. If the volume used in the test does not meet the requirements set out in the Ecodesign Directive a warning will be displayed requesting that the assessor contact the manufacturer and seek alternate test data.

Similarly, the declared load profile and volume used in testing must be appropriate for the installation within the dwelling. If the installed storage does not meet the requirements in Ecodesign a warning will be displayed advising the assessor to advise the client/ designer and installer that the installation may not perform to the calculated efficiency.

Test Conditions EN 16147					
Source of data	Water heating energy efficiency, ŋwh		Source from Ecodesign Data or accredited tests to EN 16147		
Water heating energy efficiency, ŋwh	99	%	Source from Ecodesign Data or accredited tests to EN 16147		
Equivalent Coefficient of Performance	2.475	kW/kW			
Reference Hot Water Temperature	55	°C	Source from Ecodesign Data or accredited tests to EN 16147, set at 40°C if unknown.		
Required Source Temperature	7	°C	Based on Table 5 of EN 16147		
Capacity of Heat Pump	5	kW	Source from Ecodesign Data, manufacturers data or accredited tests to EN 16147		
Declared Load Profile	4XL		Source from Ecodesign Data, manufacturers data or accredited tests to EN 16147		
Standby Heat Loss	0.6	kWh/day	Source from Ecodesign Data or accredited tests to EN 16147, set as 0 if unknown		
Volume of DHW accounted for in test	700	litre	Source from Ecodesign Data or accredited tests to EN 16147		
			WARNING: The test data is not appropriate for the installation within the dwelling, the assessor must contact the client/ designer and installer, advising that the installed hot water cylinder is not appropriate for the Ecodesign Directive efficiency data and therefore the heat pump will not perform to the same efficiency.		

Figure 37: Heat Pump Tool – Product Performance Data EN 16147

Test data may also be taken directly from accredited EN 16147 test certificates. In these cases the efficiency quoted will be the COP, therefore the tool gives an option for COP or Water Heating Energy Efficiency, refer to Figure 38: Heat Pump Tool – Source of Data.

Test Conditions EN 16147		
Source of data	Water heating energy efficiency, ŋwh	Source from Ecodesign Data or accredited tests to EN 16147
Water heating energy efficiency, ŋwh	Weiter heating energy efficiency, reth Coefficient of Performance, COP	Source from Ecodesign Data or accredited tests to EN 16147
Equivalent Coefficient of Performance	2.475 kW/kW	
Reference Hot Water Temperature	55 °C	Source from Ecodesign Data or accredited tests to EN 16147, set at 40°C if unknown.
Required Source Temperature	7 °C	Based on Table 5 of EN 16147
Capacity of Heat Pump	5 kW	Source from Ecodesign Data, manufacturers data or accredited tests to EN 16147
		Source from Ecodesign Data, manufacturers data or

Figure 38: Heat Pump Tool – Source of Data

The same methodology would be used for Brine to Water, Water to Water and Exhaust Air to Water heat pumps with the source data adjusting accordingly.

8. Results

The Heat Pump Calculator then calculates the efficiency of the Main Heating and Main Hot Water systems and the efficiency adjustment factors for use in DEAP.

The tool also calculates the "Additional Renewable Contribution from the Heat Pump". This is renewable energy that is supplied by the heat pump but not accounted for in the DEAP tool. The Heat Pump Calculator combines the efficiency of the Heat Pump and backup heaters. In this case electric element is used to supplement the hot water giving a combined efficiency of 202% to be entered into the DEAP software. Therefore DEAP would not consider the water heater to be renewable. The heat pump calculator determines the renewable proportion attributable to the heat pump itself and this is added to the DEAP assessment.

A Bounda			
8. Results			
Results			
Efficiency of Main Heating System	402%	%	Enter this in DEAP: energy requirements: space heating
Efficiency Adjustment Factor - Main Heating	1.00		Enter this in DEAP: energy requirements: space heating
Efficiency of Main Hot Water System	202%	%	Enter this in DEAP: energy requirements: water heating
Efficiency Adjustment Factor - Main Hot Water	1.00		Enter this in DEAP: energy requirements: water heating
			Enter this in DEAP: energy requirements: fuel data: Renewable Energy: Energy Saved or Produced:
			Renewable Thermal: Part L Total contribution (kWh/yr). Note: this is only applied to Part L renewable
Additional Renewable Contribution from Heat Pump	153.65	kWh/year	contribution in new dwelling assessments.

Figure 39: Heat Pump Tool – Results

Note: As only one set of test data is available (at 55°C) the tool bases the Efficiency on a flow temperature of 55°C irrespective of the actual flow temperature. Where more than one set of data is available, the tool will then adjust the efficiency based on the flow temperature using interpolation between the two sets of test points. <u>All sets of available valid test data must be used.</u>

The run hours can also impact on the results. For example if the heat pump was installed to operate 8 hours a day to meet internal environmental conditions, i.e. a timer on the heat pump only allows the heat pump to operate 3 hours in the morning and 5 hours in the evening. The ability of the heat pump to meet demand will be reduced resulting in the following results in this instance:

8. Results			
Results			
Efficiency of Main Heating System	371%	%	Enter this in DEAP: energy requirements: space heating
Efficiency Adjustment Factor - Main Heating	1.00		Enter this in DEAP: energy requirements: space heating
Efficiency of Main Hot Water System	202%	%	Enter this in DEAP: energy requirements: water heating
Efficiency Adjustment Factor - Main Hot Water	1.00		Enter this in DEAP: energy requirements: water heating
			Enter this in DEAP: energy requirements: fuel data:
			Renewable Energy: Energy Saved or Produced: Renewable Thermal: Part L Total contribution (kWh/yr).
Additional Densushing Contribution form Uset During	524.64	LAND Groot	Note: this is only applied to Part L renewable
Additional Renewable Contribution from Heat Pump	531.61	kWh/year	Note: this is only applied to Part L renewable contribution in new dwelling assessments.

Figure 40: Heat Pump Tool – Results 2

3.5 Entry in DEAP

The Efficiency of the Main Heating System and Efficiency Adjustment Factor – Main Heating are entered under the Energy Requirements – Space heating tab in DEAP. Refer to Figure 16 for similar input.

The Efficiency of the Water Heating System and Efficiency Adjustment Factor – Main Hot Water are entered under the Energy Requirements – Water heating tab in DEAP. Refer to Figure 17 for similar input.

The Additional Renewable Contribution is entered under the Energy Requirements – Fuel Data – Renewable Energy in DEAP under the Part L total contribution only. The type of renewable energy is Renewable Thermal. Refer to Figure 18 for similar input.

4 Example 3: Air to air heat pump compliant with Ecodesign/Energy Labelling Directive

4.1 Heat pump parameters

The calculator caters for a number of heat pump types heating air rather than water: Air to Air, Brine to Air and Water to Air.

This example looks at how an Air to Air heat pump would be entered into the calculator and DEAP. Taking the details from Example 2, the air to water heat pump is replaced with an air to air heat pump. A similar methodology would be used for Brine to Air or Water to Air.

As an air to air heat pump, it is providing space heating only.

The designer/ installer sign off sheet has been updated as follows:

Does the installation provide:	Space Heating		
(Tick applicable box)	Domestic Hot Water		
3. Heat pump selection			
Manufacturer of the installed heat pump(s)	Heat Pump Manufacturer		Ensure this is exact product manufacturer name.
Model of the installed heat pump(s)	Heat Pump 123		Ensure this is exact product model, including model name, number and qualifier where present.
Type of Heat Pump	Air to Water		
	Brine to Water		
	Water to Water		
	Exhaust Air to Water		
	Air to Air	V	
	Brine to Air		
	Water to Air		
Date of Installation	01/12/2015		Insert date heat pump was installed
Is the Heat Pump compliant with Ecodesign Directive	Yes		Select Yes or No
Is the Heat Pump compliant with Labelling Directive	Yes		, ▼ect Yes or No
Space Heating Test Standard	I.S. EN 14825		Select Standard, I.S. EN 14825 or I.S. EN 14511

Figure 41: Heat Pump Selection from Sign off sheet

4.2 Design details

The designer/ installer also confirmed the following as part of the sign off sheet; this was verified by the Assessor on site:

Firstly that the heat pump was designed to meet the full space heating demand with no backup heaters installed (as per Section 3 of the Designer Installer Sign off sheet). Water heating is supplied by an alternate system rather than heat pump.

The dwelling is served by warm air supply; therefore the default supply temperature is 35°C:

4. Heat Emitter Design		
Is there one or more radiators present	No	Select Yes or No
Is there one or more fan coil units present	No	Select Yes or No
Is there underfloor heating present	No	Select Yes or No
Is there warm air supply from the heat pump	Yes	Select Yes or No
Has a load / weather compensation been installed?	No	Select Yes or No
Provide details of zone, temperature and time control installed?	Zone and Temperature Control	Input number of heating zones, thermostats, etc
Temperature (°C) of the water leaving the heat pump when supplying space heating based on		
full heating system design conditions and at the design external temperature?	35.00	
design externar temperature:	35.00	Input temperature in degrees celcius

Figure 42: Heat Emitter Design from Sign off Sheet

4.3 Source of test data

Similar to Example 2, for heat pumps compliant with the Ecodesign directive, technical documentation outlining the test data declaration must be made available to the public to comply with the directive. Assessors can also source data from manufacturer publications referencing the relevant directives/ standards.

4.4 Entry in Heat Pump Tool

1. General Information

As per Examples 1 and 2 for details of the client and dwelling.

2. Assessor Details

As per Examples 1 and 2 for details of the BER Assessor.

3. Building Data

As per Examples 1 and 2 for details of the dwelling heat loss and group/individual heating.

4. Heat Pump Data

The Assessor enters the Manufacturer and Model of the heat pump, the type of heat pump, in this case Air to Air heat pump. As the heat pump is only supplying "Space Heating", the Water Heating Test Standard in blacked out.

4. Heat pump Data		
Manufacturer of the installed heat pump(s)		Source from Ecodesign Data or HARP Database or in compliance with DEAP methodology
Model of the installed heat pump(s)		Source from Ecodesign Data or HARP Database or in compliance with DEAP methodology
Type of heat pump	Air to Air	Source from Ecodesign Data or HARP Database or in compliance with DEAP methodology
Temperature Control	Variable Outlet	Source from Ecodesign Data
Does the installation provide:	Space heating	Source from Designer/Installer sign off sheet or site evidence without Ecodesign
Space Heating Test Standard	I.S. EN 14825	Source from Ecodesign Data or HARP Database
Water Heating Test Standard	I.S. EN 16147	Source from Ecodesign Data or HARP Database
Operation Limit Temperature (TOL)	-15.00	°C Source from Ecodesign Data

Figure 43 Heat Pump Tool – Heat Pump Data

5. Heating

The annual heating requirement and internal temperature is as per Example 2. Refer to Figure 27 and Figure 28 respectively.

As the heat pump is an Air to Air heat pump, air is automatically selected as a heat emitter.

Heat emission type served by heat pump within the dwelling:	Select all that apply:				
	No				
1 or more Radiators					
	No				
1 or more Fan Coil Units			Default Supply Temp	erature	
	No				Based on SAP input
Underfloor Heating			35	°C	parameters.
	Yes			-	
Air used as Emitter (to Air Units)					
Design Flow Temperature					
Use "Default Supply Temperature" unless other evidence available	35	°c			
		-	Source from SAP 200	9 & 2012 - Calc	ulation Methodology
Exponent n, characterising type of emission system	1		for electrically driven heat pumps		
			Source from SAP 200	9 & 2012 - Calo	ulation Methodology
Emitter Temperature Drop	5	°C	for electrically driver	heat pumps	
Return Temperature at design conditions	30				
			Source from Designe	r/Installer sign	off sheet, default is
No of Hrs per Day Heat Pump in Operation	16	hrs	DEAP heating schedu		
Cut-out hours	8				

Figure 44: Heat Pump Tool – Heating

As per Example 2, no backup heater has been installed.

6. Domestic Hot Water

As "Space Heating" was selected for "Does the installation provide:", all editable fields in the Domestic Hot Water section are blacked out.

7. Product Performance Data

As the Space Heating test standards are EN 14825, the data associated with EN 16147, EN 14511 and EN 255-3 are blacked out.

The test data associated with EN 14825 is taken directly from the publicly available technical data declaration in compliance with the Ecodesign directive or directly from manufacturer literature referencing directives/ regulations (or accredited/CE marked test data).

For "to Air" heat pumps there is only one set of test conditions under EN 14825, therefore "No" is selected for Low, Medium and Very High.

	High Temperature	For Heating by Air,	
	Data is mandatory requirement under	select No for Low,	
	Ecodesign Directive (Note its referred to as	Medium and Very	
	Medium Temperature Application in Ecodesign	High Temperature	Source from Ecodesign Data or accredited tests to
Test Conditions EN 14825:2013	directive)	Test Points	EN14825
			Source from Ecodesign Data or accredited tests to
Additional Test Points available at:	Low Temperature		EN14825
			Source from Ecodesign Data or accredited tests to
	Medium Temperature	No	EN14825
			Source from Ecodesign Data or accredited tests to
	Very High Temperature	No	EN14825
Maximum Te	est Temperature allowed for in EN14825 testing	55	

Figure 45: Heat Pump Tool – Product Performance Data EN 14825 -1

Note as "to Air" has been selected the sink temperature is A20 based on the requirements set out in EN 14825 standard.

	Test Conditions EN 14825:2013	A (88%)	B (54%)	C (35%)	D (15%)	E* (100%)
Low Temperature Application (35°C)	Source	A-7	A2	A7	A12	A-15
	Sink					
EN 14825:2013 - Table 12 (ASHP) or Table 24 (GSHP)	Heating Capacity (kW)					
	Coefficient of Performance (kW/kW)					
Mid Temperature Application (45°C)	Source	A-7	0.00	A7	A12	A-15
	Sink					
EN 14825:2013 -Table 15 (ASHP) or Table 27 (GSHP)	Heating Capacity (kW)	0.00				
	Coefficient of Performance (kW/kW)					
High Temperature Application (55°C)						
	Source	A-7	A2	A7	A12	A-15
EN 14825:2013 - Table 6 (AAHP), Table 9 (GAHP), Table 18 (ASHP) or	Sink	A20		A20		A20
Table 30 (GSHP)	Heating Capacity (kW)	11.90	7.20	5.90	4.50	9.30
	Coefficient of Performance (kW/kW)	1.89	3.18	4.27	6.32	1.70
Very High Temperature Application (65°C)	Source					

Figure 46: Heat Pump Tool – Product Performance Data EN 14825 -2

8. Results

The Heat Pump Calculator then calculates the efficiency of the Main Heating and the efficiency adjustment factors.

In this case there is no "Additional Renewable Contribution from the Heat Pump". There is no backup heating required. DEAP correctly reflects the renewable contribution from the heat pump.

8. Results						
Results						
Efficiency of Main Heating System	395%	%	Enter this in DEAP: energy requirements: space heating			
Efficiency Adjustment Factor - Main Heating	1.00		Enter this in DEAP: energy requirements: space heating			
Efficiency of Main Hot Water System	202%	%	Enter this in DEAP: energy requirements: water heating			
Efficiency Adjustment Factor - Main Hot Water			Enter this in DEAP: energy requirements: water heating			

Figure 47: Heat Pump Tool – Results

4.5 Entry in DEAP

The Efficiency of the Main Heating System and Efficiency Adjustment Factor – Main Heating are entered under the Energy Requirements – Space heating tab in DEAP. Refer to Figure 16 for similar input.

5 Example 4: Exhaust Air to water heat pump compliant with Ecodesign/ Energy Labelling Directive

5.1 Entry in Heat Pump Tool

This example is based on the dwelling in Example 2 served by an Exhaust Air to Water heat pump in lieu of an Air to Water heat pump.

As the Exhaust Air to Water Heat Pump is similar to other "to Water" heat pumps, the methodology is as per Example 2 with the following changes.

The type of heat pump is selected as "Exhaust Air to Water"

Type of heat pump			Source from Ecodesign Data or HARP Database or in
	Exhaust Air to Water		compliance with DEAP methodology
Temperature Control			
	Variable Outlet		Source from Ecodesign Data
Does the installation provide:			Source from Designer/Installer sign off sheet or site
	Space heating and Domestic Hot Water		evidence without Ecodesign
Space Heating Test Standard			
	I.S. EN 14825		Source from Ecodesign Data or HARP Database
Water Heating Test Standard			
-	I.S. EN 16147		Source from Ecodesign Data or HARP Database
Operation Limit Temperature (TOL)	-15.00	°C	Source from Ecodesign Data
Heating water operating limit temperature (WTOL)	60.00	°C	Source from Ecodesign Data

Figure 48 Heat Pump Tool – Heat Pump Data

Under EN 14825, Exhaust Air to Water heat pumps part load tests are performed with outdoor heat exchanger conditions and therefore are as per an Air to Water Heat Pump for identification of test data. For this heat pump only high temperature application data is available:

	Test Conditions EN 14825:2013	A (88%)	B (54%)	C (35%)	D (15%)	E* (100%)
Low Temperature Application (35°C)	Source	A-7	A2	А7	A12	A-15
	Sink					
EN 14825:2013 - Table 12 (ASHP) or Table 24 (GSHP)	Heating Capacity (kW)					
	Coefficient of Performance (kW/kW)					0.00
Mid Temperature Application (<mark>45°C</mark>)	Source	A-7	A2	A7	A12	A-15
	Sink					
EN 14825:2013 - Table 6 (AAHP), Table 9 (GAHP), Table 15 (ASHP) or Table 27 (GSHP)	Heating Capacity (kW)					
	Coefficient of Performance (kW/kW)					
High Temperature Application (<mark>55°C)</mark>	Source	A-7	A2	Α7	A12	A-15
	Sink	W52	W42	W36	W30	W55
EN 14825:2013 - Table 18 (ASHP) or Table 30 (GSHP)	Heating Capacity (kW)	11.90	7.20	5.90	7.40	9.30
	Coefficient of Performance (kW/kW)	1.83	3.18	4.27	6.32	1.70
Very High Temperature Application (<mark>65°C)</mark>	Source	A-7	A2	4.27 A7	A12	A-15

Figure 49: Heat Pump Tool – Performance Data EN 14825

Under EN 16147, Exhaust Air to Water heat pumps are tested to a source temperature of 20°C which differs from an Air to Water Heat Pump.

Test Conditions EN 16147		
Source of data	Water heating energy efficiency, ŋwh	Source from Ecodesign Data or accredited tests to EN 16147
		Source from Ecodesign Data or accredited tests to EN
Water heating energy efficiency, ηwh	99 %	16147
Equivalent Coefficient of Performance	2.475 kW/kW	
		Source from Ecodesign Data or accredited tests to EN
Reference Hot Water Temperature	55 °C	16147, set at 40°C if unknown.
Required Source Temperature	20 °C	Based on Table 5 of EN 16147
Capacity of Heat Pump	5 kw	Source from Ecodesign Data, manufacturers data or accredited tests to EN 16147
capacity of field Formp		Source from Ecodesign Data, manufacturers data or
Declared Load Profile	L.	accredited tests to EN 16147
		Source from Ecodesign Data or accredited tests to EN
Standby Heat Loss	0.6 kWh/day	16147, set as 0 if unknown
		Source from Ecodesign Data or accredited tests to EN
Volume of DHW accounted for in test	150 litre	16147

Figure 50: Heat Pump Tool – Performance Data EN 16147

The Heat Pump tool calculates the Efficiency of the Main Heating System and Main Hot Water System, as well as the efficiency adjustment factors for entry in the DEAP software.

Note a guidance note appears in the Renewable Contribution for Part L compliance for Exhaust Air heat pumps: As per the DEAP methodology, the renewable contribution should be based on outside source temperatures. See the heat pump guidance document for further details.

8. Results			
Results			
Efficiency of Main Heating System	642%	%	Enter this in DEAP: energy requirements: space heating
Efficiency Adjustment Factor - Main Heating	1.00)	Enter this in DEAP: energy requirements: space heating
Efficiency of Main Hot Water System	202%	%	Enter this in DEAP: energy requirements: water heating
,,			
Efficiency Adjustment Factor - Main Hot Water	1.00		Enter this in DEAP: energy requirements: water heating
			Enter this in DEAP: energy requirements: fuel data:
			Renewable Energy: Energy Saved or Produced:
	Please refer to guidance on how to deal with		Renewable Thermal: Part L Total contribution (kWh/yr).
	renewable contribution from Exhaust Air Heat		Note: this is only applied to Part L renewable
Additional Renewable Contribution from Heat Pump	Pumps	kWh/year	contribution in new dwelling assessments.

Figure 51: Heat Pump Tool – Results

Therefore where an Assessor is looking to carry out Part L renewable contribution compliance check the Assessor must select Air to Water Heat Pump and adjust the test data and source temperatures to outside air.

5.2 Entry in DEAP

The Efficiency of the Main Heating System and Efficiency Adjustment Factor – Main Heating are entered under the Energy Requirements – Space heating tab in DEAP, refer to Figure 16for similar input.

The Efficiency of the Water Heating System and Efficiency Adjustment Factor – Water Heating are entered under the Energy Requirements – Space heating tab in DEAP, refer to Figure 17 for similar input.

6 Example 5: Air to water heat pump compliant with Ecodesign/ Energy Labelling Directive with backup heater.

6.1 Design Details

This fifth example takes the second example and includes a backup heater for each of space and water heating.

As per the Heat Pump Methodology guidance document, any system that is acting as a backup to the heat pump is considered part of the Main Heating system and is therefore not considered a secondary heater. The backup would heat multiple rooms (like the heat pump) rather than be a single room heater (such as a typical secondary heater in DEAP).

In this case, the designer/ installer has confirmed that a backup heater is present in Section 3 of the Designer Installer Sign Off Sheet: a solid fuel stove with back boiler supplying space and water heating.

acaigned to ran		
Does the heat pump provide a full or partial		
space heating service?	Partial	Select Full, Partial or None
If partial, is there a back up space heater present		
to supplement the Heat Pump?	Yes	Select Yes or No
Outline type of backup space heater and		
associated fuel	Solid Fuel Stove with Back Boiler	Enter Type and Fuel of Heater
Does the heat pump provide full or partial hot		
water heating?	Partial	Select Full, Partial or None
If partial, is there a back up water heater present		
to supplement the Heat Pump?	Yes	Select Yes or No
Outline type of backup water heater and		
associated fuel	Solid Fuel Stove with Back Boiler	Enter Type and Fuel of Heater

Figure 52: Backup heater from Signoff sheet.

There is no accredited test data available for the efficiency of the stove, therefore following the DEAP methodology, default efficiency is taken from Table 4a of the DEAP Manual of 65%.

Note: The solid fuel stove with back boiler is considered as part of the main heating system, i.e. it's a backup to the heat pump. Following Section 9.2.4 of the DEAP Manual, the combination of the boiler and room heater are part of the main heating system and therefore the room heater is not entered separately as a secondary room heater. If the installation was a gas fired room heater with back boiler, following Section 9.2.4 of the DEAP Manual, the room heater could be a secondary heater following the DEAP Appendix A requirements while the back boiler is part of the main heating system and therefore a backup to the heat pump in this instance.

6.2 Entry in Heat Pump Tool

The data entered in the Heat Pump Tool is as per the Example 2 with additional input for the backup heater.

The Assessor selects the fuel and enters the efficiency of the backup heater. Note the adjusted efficiency of backup heater shows the efficiency of the backup heater in comparison to a direct

electric heater so it can be combined with the electrical heat pump as a single heating system in DEAP.

Electricity Primary Energy Factor		2.19	Source from DEAP tool, Options
Is a Back Up Space Heater Present within Dwelling	Yes		Source from Designer/Installer sign off sheet
Back Up Space Heater Fuel	Solid multi-fuel		Source from Designer/ Installer sign off sheet
Primary Energy Factor for Back Up Space Heater		1.1	
Efficiency of Back up Space Heater		65% %	Based on DEAP Methodology, defaults taken from DEAP Manual.
Adjusted Efficiency of Back up Space Heater relative to Direct Electric Heating		1.29	
is there a water heater installed as back up for the heat pump	Yes		Source from Designer/ Installer sign off sheet
Back Up Water Heater Fuel	Solid multi-fuel		Source from Designer/Installer sign off sheet
Primary Energy Factor for Back Up Water Heater		1.1	
Efficiency of Back up Water Heater		65% %	Based on DEAP Methodology, defaults taken from DEAP Manual.
Adjusted Efficiency of Back up Water Heater relative to Direct Electric Heating		1.29	

Figure 53: Heat Pump Tool – Backup heater

The Heat Pump Calculator then calculates the efficiency of the Main Heating and Main Hot Water systems and the efficiency adjustment factors taking account of the Backup heater.

The tool also calculates the "Additional Renewable Contribution from the Heat Pump". This is renewable energy that is supplied by the heat pump but not accounted for in the DEAP tool. The Heat Pump Calculator combines the efficiency of the Heat Pump and backup heaters. In this case stove back boiler is used to supplement the hot water giving a combined efficiency of 220% that is entered into the DEAP tool. Therefore DEAP would not consider the water heater to be renewable. The heat pump calculator determines the renewable proportion attributable to the heat pump itself and this is added to the DEAP assessment.

8. Results			
Results			
Efficiency of Main Heating System	402%	%	Enter this in DEAP: energy requirements: space heating
Efficiency Adjustment Factor - Main Heating	1.00		Enter this in DEAP: energy requirements: space heating
Efficiency of Main Hot Water System	220%	%	Enter this in DEAP: energy requirements: water heating
Efficiency Adjustment Factor - Main Hot Water	1.00		Enter this in DEAP: energy requirements: water heating
			Enter this in DEAP: energy requirements: fuel data:
			Renewable Energy: Energy Saved or Produced: Renewable Thermal: Part L Total contribution (kWh/yr).
Additional Renewable Contribution from Heat Pump	153.65	kWh/year	Note: this is only applied to Part L renewable contribution in new dwelling assessments.

Figure 54: Heat Pump Tool – Results

6.3 Entry in DEAP

The Efficiency of the Main Heating System and Efficiency Adjustment Factor – Main Heating are entered under the Energy Requirements – Space heating tab in DEAP. Refer to Figure 16 for similar input.

The Efficiency of the Water Heating System and Efficiency Adjustment Factor – Main Hot Water are entered under the Energy Requirements – Water heating tab in DEAP. Refer to Figure 17 for similar input.

The Additional Renewable Contribution is entered under the Energy Requirements – Fuel Data – Renewable Energy in DEAP under the Part L total contribution only. The type of renewable energy is Renewable Thermal. Refer to Figure 18 for similar input.

7 Example 6: Brine to water heat pump compliant with Ecodesign/ Energy Labelling Directive with group heating scheme

7.1 Design Details

This example looks at the use of a Brine to Water Heat pump serving a Group Heating Scheme.

The dwelling is as per Example 2, but the heat pump is serving 6no. houses.

As the heat pump is in compliance with the Ecodesign/ Energy Labelling directives, the methodology is as per Example 2. For heat pump installations serving group heating schemes, the Assessor must allow for the total heating demand of the group heating scheme as follows:

The Assessor must determine the following:

- Area of the dwelling being assessed
- The total area of dwellings being served by the group heating scheme
- The number of heat pumps serving the group heating scheme

7.2 Source of test data

For heat pumps in compliance with the Ecodesign/ Energy Labelling directives, the methodology is as per Example 2. However an allowance needs to be made if there are a number of heat pumps serving the group heating scheme. Note: This example is based on all heat pumps being of the same model/ type.

For example, if the following test data is available for a heat pump:

Type of heat source/sink:			B	rine-to	o-water				
Low-temperature heat pump:				N	No				
Equipped with supplementary heater:				Ye	es				
Heat pump combination heater:				Yes					
Climate condition:				Ave	rage				
Temperature application:		1	Medium	temp	erature (55 °C)				
Applied standards: EN14825 and EN16147	7								
Rated heat output	Prated	10,0	kW		Seasonal space heating en efficiency	ergy	η _s	147	%
Declared capacity for part load at outdoor tem	perature Tj				Declared coefficient of performa	nce for part l	oad at outdo	or temperatur	re Tj
Tj = -7 °C	Pdh	7,9	kW		Tj = -7 °C		COPd	3,40	kW
Tj = +2 °C	Pdh	8,7	kW		Tj = +2 °C		COPd	3,91	kW
Tj = +7 °C	Pdh	9,2	kW		Tj = +7 °C		COPd	4,25	kW
Tj = +12 °C	Pdh	9,6	kW		Tj = +12 °C		COPd	4,58	kW
Tj = biv	Pdh	8,2	kW		Tj = biv		COPd	3,52	kW
Tj = TOL	Pdh	7,6	kW		Tj = TOL		COPd	3,19	kW
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW		Tj = -15 °C (if TOL < -20 °C)		COPd		kW
Bivalent temperature	T _{biv}	-5,2	°C		Operation limit temperature		TOL	-10	°C
Cycling interval capacity for heating	Pcych		kW		Cycling interval efficiency		COPcyc		-
Degradation co-efficient	Cdh	1,00	-		Heating water operating lir	mit	WTOL	65	°C
Power consumption in modes other than active	mode				Supplementary heater				
Off mode	POFF	0,002	kW		Rated heat output		Psup	2,4	kW
Thermostat-off mode	P _{TO}	0,01	kW						
Standby mode	P _{SB}	0,007	kW		Type of energy input			Electric	
Crankcase heater mode	P _{CK}	0,014	kW						
Other items									
Capacity control		fixed			Rated air flow rate, outdoo	ors			m³/h
					Rated water flow rate, indo				
Sound power level, indoors/outdoors	L _{WA}	45/-	dB		exchanger			0,82	m³/h
					Rated brine or water flow r	rate,			
Annual energy consumption	Q _{HE}	5345	kWh		outdoor heat exchanger			1,56	m³/h
For heat pump combination heater:									
Declared load profile		XL			Water heating energy effic	ciency	η_{wh}	96	%
Daily electricity consumption	Q _{elec}	7,95	kWh		Daily fuel consumption		Q _{fuel}		kWh
Annual electricity consumption	AEC	1745	kWh		Annual fuel consumption		AFC		GJ

Figure 55: Brine to Water Test Data

The number of heat pumps in the group heating scheme in this example is 3no.

When entering the data into the Heat Pump Tool the following are noted for Figure 56:

- The heat pump is fixed capacity control as selected under Section 4 of the Heat Pump Tool. The tool automatically fixes the sink temperature at 55°C for all test points.
- 2) The five test points are quoted in the declared test data at the outdoor temperature of Tj, as referenced in the tool as the test conditions. The source temperature for the Brine to Water heat pump is Brine at a temperature of 0°C in compliance with EN 14825.
- 3) The Heating Capacity entered in the tool must accommodate the actual capacity of the installation, therefore it is entered in the tool as follows: i.e. 3no x Heating Capacity at each test point:

Test Conditions EN 14825:2013	A (88%) -7°C	B (54%) 2°C	C (35%) 7°C	D (15%) 12°C	E* (100%) TOL
Source	BO	BO	BO	BO	BO
Sink		W35	W35	W35	W35
Heating Capacity (kW)					0.00
Coefficient of Performance (kW/kW)					0.00
Source					80
Sink					W45
Heating Capacity (kW)					0.00
Coefficient of Performance (kW/kW)	0.00	0.00	0.00	0.00	0.00
Source	во	BO	во	BO	BO
Sink	W55	W55	W55	W55	W55
Heating Capacity (kW)	23.70	26.10	27.60	28.80	22.80
Coefficient of Performance (kW/kW)	3.40	3.91	4.25	4.58	3.19
Source					80
Sink	W65	W65		W65	W65
Heating Capacity (kW)					0.00
Coefficient of Performance (kW/kW)	0.00	0.00	0.00	0.00	0.00

Figure 56: Heat Pump Tool – Performance Data EN 14825

Similarly the capacity associated with the EN 16147 also needs to account for the 3no heat pumps. The capacity of the heat pump was 5kW, this has been increased to 15kW. The storage, standby losses and Declared Load Profile are all taken directly from the Ecodesign Data/ test certificates and NOT adjusted. It should be noted that given the number of configurations that can occur with Group Heating schemes, the tool does not include a check of the test data against the installed storage data but a "Note" appears asking the assessor to check that the test data is appropriate for the installation.

Test Conditions EN 16147				
			Source from Ecodesign Data or accredited tests to	EN
Source of data	Water heating energy efficiency, ŋwh		16147	EN.
Water heating energy efficiency, ŋwh	96	i %	Source from Ecodesign Data or accredited tests to 16147	EN
Equivalent Coefficient of Performance	2.4	kW/kW		
			Source from Ecodesign Data or accredited tests to	EN
Reference Hot Water Temperature	55	°C	16147, set at 40°C if unknown.	
Required Source Temperature		°c	Based on Table 5 of EN 16147	
required boarce remperature			Source from Ecodesign Data, manufacturers data	or
Capacity of Heat Pump	15	kW	accredited tests to EN 16147	
Declared Load Profile	xi		Source from Ecodesign Data, manufacturers data accredited tests to EN 16147	or
Declared Load Profile			Source from Ecodesign Data or accredited tests to	EN
Standby Heat Loss	0.6	kWh/day	16147, set as 0 if unknown	
			Source from Ecodesign Data or accredited tests to	EN
Volume of DHW accounted for in test	150	litre	16147	
			NOTE: Assessor must verify that the installed stor volume is greater than used in test results	age

Figure 57 Heat Pump Tool – Performance Data EN 16147

7.3 Entry in Heat Pump Tool

When entering in the Heat Pump Tool, the Assessor must allow for the total demand on the heat pump(s) from the group heating scheme.

The Assessor selects "Yes" for the "Is the Heat Pump part of a Group Heating Scheme". They then enter the proportion of group heating provided by the heat pump, the floor area of the dwelling being assessed and the total floor area being served by the group heating scheme.

In this example the heat pump is providing 100% of the group heating scheme main heating, the floor area of the dwelling is $100m^2$ and the group heating scheme is serving 6no dwellings of the same type with total floor area $600m^2$.

3. Building Data			
Total heat loss (W/K) taken from DEAP	321	w/ĸ	Source from the Building Elements - Heat Loss Result: Tab in DEAP
Heat Loss Watts	41254.92	Watts	Required Heating Capacity at design conditions.
Is the Heat Pump part of a Group Heating Scheme	Yes		
Proportion of group heating provided by the heat pump	100%	96	
Floor Area of Dwelling	100	m²	Source from DEAP
If Heat Pump serves a Group Heat Scheme, the total Floor Area served by Heat Pump is:	600	m²	

Figure 58: Heat Pump Tool – Building Data

The remainder of the data input into the tool is as per Example 2. The heat pump tool calculates the Main Heating Efficiency, the Water Heating Efficiency and associated efficiency adjustment factors:

					-
8. Results					
Results					
Efficiency of Main Heating System	383%	%	Enter this in DEAP:	energy requiren	nents: space heating
Efficiency Adjustment Factor - Main Heating	1.00		Enter this in DEAP:	energy requiren	nents: space heating
Efficiency of Main Hot Water System	195%	%	Enter this in DEAP:	energy requiren	nents: water heating
Efficiency Adjustment Factor - Main Hot Water	1.00		Enter this in DEAP:	energy requiren	nents: water heating
			Enter this in DEAP: Renewable Energy:	Energy Saved o	r Produced:
			Note: this is only ap	plied to Part L r	
Additional Renewable Contribution from Heat Pump	415.23	kWh/year	contribution in new	dwelling assess	sments.

Figure 59 Heat Pump Tool - Results

7.4 Entry in DEAP

When entering into DEAP, the methodology is as outlined in DEAP Manual Section C3 is followed.

The percentage of heat for space heating and that for water heating is determined based on the space and water heat delivered to the dwelling. Taking the heating demand and water demand from Example 2 of 8372 kWh/yr and 4772 kWh/yr respectively, and the heat pump is providing 100% of the load, the percentages are as follows 64% for space heating and 36% for hot water. Note the figures 8372 kWh and 4772 kWh are as per the DEAP delivered energy in the "Results" tab in the group heating assessment.

Taking the results from Heat Pump Calculator the efficiencies are entered into DEAP as follows:

The efficiency entered into DEAP is the Efficiency (from Heat Pump Tool) x Efficiency Adjustment Factor (from Heat Pump Tool).

elect space heating type:	Group					
Space heating CHP	Fuel data					
Main group heating a	system	7	Calculation of pr	rimary energy	and CO ₂ em	ission factors
ls charging based on h	eat consumed?	Yes 🗸	Distribution loss fa	actor		
Efficiency factor for cha	arging method	1	Fraction of heat fr from power station		covered	
Heat for space heating [kWh/y]	delivered to dwelling	8372	Heat delivered to	dwelling from Cl	HP[kWh/y]	0
Secondary system						
% of heat from second	ary/supplementary system		Electricity for pum	ips and fans [kV	Wh/y]	131
Efficiency of secondary	y/supplementary system [%]					3
Energy required for sec	condary space heating [kWh/y]	0				
Heat Source	Fuel type		Efficiency[%]	Percentage of heat [%]	Primary energy conversion factor	CO2 emission factor [kg/kWh]
Heating System 1	Electricity	~	383	64	2.19	0.473
Heating System 2	Electricity	~	195	36	2.19	0.473
Heating System 3	None	~			0.00	0.000
Solar Space heating	system					
Factors for heat deliv from heating systems				100 of 100 🗸	0	0

Figure 60 DEAP Tool Energy Requirements 1