

Seal SUSTAINABLE ENERGY AUTHORITY OF IRELAND **Energy In Action**

An introduction to energy efficiency across the energy strands of the Junior Cycle Science Specification.

Learning Outcomes

- PW 7 <u>Design</u>, build and test a device that transforms energy from one form to another in order to perform a function; <u>describe</u> the energy changes and ways of improving efficiency
- PW6 –Explain energy conservation and <u>analyse</u>
 processes in terms of energy changes and dissipation
- NoS 10 <u>Appreciate</u> the role of science in society; and its personal, social and global importance; and how society influences scientific research.

STE(A)M box

Efficiency Tower – Time: 8-10 minutes (approximately)

- What is in the STE(A)M box?
 - Unlimited mini marshmallows and toothpicks.
 - Scissors allowed but no cellotape

What to do

 Ask students to work in teams to design and build a free standing tower(s), exactly 15cm high. They can use as much or as little of the materials. They should spend 2 to 3 minutes designing their tower and then 5 to 6 minutes making the tower or towers

Number of marshmallows & toothpicks used

Icebreaker

Last activity was an introduction into the term efficiency.

Our focus now and for the remainder of the workshop is on energy efficiency (emphasise ENERGY).

Show the picture on the next slide:

What messages is the picture sending? Allow the students to consider the image and after a few minutes encourage discussion.

Prompt discussion with question

Definitions

 With energy efficiency, you don't have to sacrifice comfort to

save energy

- Energy conservation involves a change in behaviour to save energy.
- Examples?

STE(A)M Box 2

Mobile Challenge

- What is in the STE(A)M box? Contents vary on how you develop the challenge towards fair test and calculations but initially,
 - 4 x polo mints, 5 x paper clips, 2 x straws, 1 x sheet of paper,
 - 1 x pipe cleaner (optional), 1 x balloon (optional)
 - 1 x 48cm ribbon/thread tied (optional)
- What to do
 - Construct a mobile vehicle that can travel horizontally on a flat track it must be self propelled.
 - Before you make, draw two variations of your design and discuss in your group.
 - You can use scissors and sellotape if needed. Not all contents need to be used!

Discussion

- What propelled your vehicle?
- What were the energy conversions taking place?
- Were all the energy conversions useful?

Think about...Discuss...Write **STE** down..

- If we were to replace the balloon with a hairdryer as a propeller what energy conversions are now taking place throughout the system?
- Are all energy conversions here working as useful energy within the system? Where is energy being changed into another form that is not useful?

For you to do...

- Test your vehicle how long does it take to travel 2m? *How could you make this a more precise measurement*?
- The Kinetic energy of your vehicle is calculated as follows:

1/2 x mass x velocity²

- This is the **useful energy output**.
- You may not change the mass of your vehicle.
- Can you change its' design to make it more efficient? i.e. increase its useful energy output. How would you test this?

Energy Conversion and Dissipation

- Did all vehicles get the same input of energy from the hair dryer?
- Did they all travel the same distance?
- Was all the energy converted into useful Kinetic Energy?

In most systems some energy is dissipated, that is it is converted into forms which are not useful and which cannot be recovered.

Discuss and decide

 If we were to race all the vehicles over 2 metres could we say that the winning vehicle was the most efficient?

Representing energy changes and dissipation

Sankey Diagrams:

- These give a visual of input and output energy
- Width represents total energy, length doesn't matter

Activities on Sankey Diagrams

IN JUNIOR CYCLE

- Activities for Junior Cycle students
- Download from

www.seai.ie/energyinaction

IN JUNIOR CYCLE

STRAND C ENERGY AWARENESS

C2: MY ENERGY AUDIT

C2.4 WORKSHEET H: READING A SANKEY DIAGRAM

Activity on Electric Vehicles

IN JUNIOR CYCLE

- Activities for Junior Cycle students
- Download from

www.seai.ie/energyinaction

seaí one good idea

What is our role as Educators in reducing global demand for energy?

- Discuss 5 things in your school or at home that use energy – heat, electrical etc. State the energy conversions involved.
- How can you calculate the % efficiency of 2 devices?
- Record ways of increasing the efficiency of the 2 devices.

Abstract for Winners 2017:

Raising awareness of energy ratings for household appliances, among adults in their community.

www.seai.ie/onegoodidea

IN JUNIOR CYCLE

Stay in touch

Join our ezine

Visit our website <u>www.seai.ie</u>

Tower Challenge

ldea 1

ldea 2

UNLIMITED MATERIALS: MARSHMALLOWS AND TOOTHPICKS

Mobile Vehicle Challenge

ldea 1

STRAWS X2, POLO MINTS X4, PIPE CLEANER, BALLOON, UNLIMITED PAPER

RACE RESULTS

	Time (s)	Distance (m)
Trial 1		
Trial 2		
Trial 3		
Average		

Calculations

Efficiency = $\frac{\text{Useful Energy Output}}{\text{Energy Input}} \times 100\%$

 $Efficiency = \frac{\text{Useful Power Output}}{\text{Power Input}} \times 100\%$

