IS399 – Delivering energy performance
PM Group experience

expertise.

The project delivery specialists
Design Projects - Organisation
Energy Recovery through collaboration!
Organisational Structure

Top Management

EED Owner
EED Expert
Design Projects

Knowledge
Lessons Learnt

Management Representative
Continual Improvement Activity
Management System
Guiding Principles of Energy Efficient Design

Optimise energy use and consumption in the following sequence;

- Energy Avoidance
- Energy Conservation
- Energy Efficiency
- Energy Sources
Guiding Principles of Energy Efficient Design

Assess and reduce energy losses from energy source(s) to energy use.
Guiding Principles of Energy Efficient Design

Exploit opportunities for energy recovery, for example by configuring working temperatures of various processes to effect energy recovery.
Guiding Principles of Energy Efficient Design

Use the lowest practical temperature for heating systems and the highest practical temperature for cooling systems

Impact of Chilled Water Design Temperature
IPLV @ 5/11°C = 7.8
IPLV @ 8/13°C = 9.5

HX can trim load or displace chiller in winter
Guiding Principles of Energy Efficient Design

For fluid flow consider;

- Minimising flow rate requirements,
- Minimising pressure losses in the distribution network,
- Variable flow operation for variable load systems.

$$\text{KWhrs} = f(Q, P, T, \eta)$$

HVAC Example

- **Q** = air changes, VAV operation
- **P** = Specific fan power, kw/m3/s
- **T** = Night setback
- **η** = fan, motor, electrical efficiencies
Guiding Principles of Energy Efficient Design

Do not over-specify quality requirements for utilities.

Examples

- Purified water or WFI
- Challenge Comp. air requirement
 - Electric instead of pneumatic actuated valves
 - Low pressure instead of high pressure air for drying post CIP.
Guiding Principles of Energy Efficient Design

Avoid oversizing processes and equipment through excessive design margins.

Chiller example:

- End user demand estimated by Process & HVAC engineers: $X_1, X_2, X_3, X_1, X_4, \ldots$
 - Engineers may add margin to their calculated load
 - Peak external weather conditions impact HVAC loads
- $L_{\text{total}} \neq X_1 + X_2 + X_3 + X_1 + X_4 + \ldots$
- $L_{\text{total}} = \text{Peak simultaneous demand} – \text{align with production schedule}$
- Utility Engineers may add margin and then select next available chiller size(s)
Configure utility systems so that they can be controlled to meet variable end-user demand without losing overall system efficiency.

OR

- Chiller 100% Peak Load
- Chiller 100% Peak Load
- Chiller 33% Peak Load
- Chiller 66% Peak Load
- Chiller 66% Peak Load
When does energy efficient design BEGIN?

<table>
<thead>
<tr>
<th>Layer</th>
<th>Definition</th>
<th>Cleanroom Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Service</td>
<td>The desired outcome that necessitates the usage of energy</td>
<td>Viable/Non-viable levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temp/humidity requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
</tr>
<tr>
<td>Process</td>
<td>The means by which the energy service is achieved</td>
<td>ACPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AHU Configuration</td>
</tr>
<tr>
<td>Equipment</td>
<td>The constituent parts of the process</td>
<td>Fans, motors, heating & cooling systems</td>
</tr>
<tr>
<td>Control</td>
<td>The control applied on the above equipment</td>
<td>Control sequences</td>
</tr>
<tr>
<td>Operation and Maintenance</td>
<td>The operation and maintenance applied to the equipment</td>
<td>Filter change out frequency</td>
</tr>
<tr>
<td>Management</td>
<td>The management including general housekeeping, logging etc.</td>
<td>EnMS</td>
</tr>
</tbody>
</table>

Before Design

Design

After Design