

Upcoming changes to DEAP methodology

Changes to DEAP Water Heating

Changes to DEAP Lighting Demand

Changes to DEAP Ventilation

Renewable Energy Ratio (Part L new dwelling compliance)

Changes to DEAP Methodology – Provisional Timelines

Date		Update to include:
April 2019	Part L (Dwellings) 2019 published	Nzeb standard for dwellings
	DEAP workbook version 4.2.0	Updates to DEAP methodology, TGD L 2019 compliance check, integrated heat pump calculator
	DEAP manual version 4.2.0	Methodology changes & TGD L 2019 compliance
	Survey Guide version 3.0	Survey & publication guidance on methodology changes
	Survey Form	New lighting, MVHR, water heating inputs included
July 2019	DEAP 4.2.0 software	UI updates, methodology updates, TGD L 2019 compliance checks & integrated heat pump calculation tool
	DEAP manual version 4.2.1	Incorporating changes to DEAP 4 software, methodology updates

Water Heating

Water Heating – Changes to energy demand calculation

- In NZEB hot water energy demand can be significantly larger than the space heating energy demand.
- Demand has been based on number of occupants (floor
 - area) too simple compared to space heating calculation.

New methodology will take account of

- Updated occupancy rates
- Shower types and presence of baths
- Electricity used by electric showers
- Low water use fittings

- Primary Space Heating
 Primary Water Heating
 Primary Lighting
 Primary Pumps/ Fans
 - Seal SUSTAINABLE ENERGY AUTHORITY OF IRELAND

Water Heating – Updated occupancy rates

Water Heating – Updated hot water requirement

• A daily hot water requirement in litres/day is calculated separately for three categories of use:

(V_{d.shower})

- Hot water required for showers
- Hot water required for baths
- Hot water required for other uses

(V_{d,bath}) (V_{d,other})

• Combination provides a total daily hot water demand for each month

$$V_{d,average}$$
 (litres/day) = $V_{d,shower}$ + $V_{d,bath}$ + $V_{d,other}$

Water heating – Hot water required for showers

- Daily hot water requirement is calculated individually for each shower in the dwelling & then summed
- For each shower, hot water requirement depends on
 - No. of occupants (floor area) & adjusted to account for a bath if present
 - Shower flow rate (Hot water pressure) depends on plumbing arrangement, pumps, flow restrictors

Water heating – Entering showers in DEAP

1. Enter type of shower – choice of 4

Hot Water Usage fre	om Showers				
No of Sho	No of Showers Taken				1.72
	Is flow rate known	Type of System		Flow Restricto	or Known Flow Rate
					Vmin
Shower 1	No	Vented hot water	system	No	
Shower 2	No	Vented hot water	system + pump	No	
Shower 3	No	Unvented hot wat	er system	No	
Shower 4	No	Instantaneous el	ectric shower (vent	No	

Depends on no. of occupants (floor area) & if bath present

Water Heating – Identifying type of shower

Water Heating – Identifying type of shower

Water heating – Entering showers in DEAP

2. Is flow rate known? – yes or no

Hot Water Usage f	om Showers				
No of Sho	wers Taken			2.21	
	ls flow rate known	Type of System		Flow Restrictor	Known Flow Rate Vmin
Shower	Yes 📉	Vented hot water	system + pump	No	10
Shower	No	Vented hot water	system + pump	No	<u> </u>
Shower	No	Vented hot water	system	No	

Flow rate known?	Notes
Yes	Enter flow rate in DEAP
	Evidence = technical data sheet for shower
No	A default flow rate is applied based on shower type

Water Heating – Entering showers in DEAP

2. Is flow rate known? If not, default flow rates are applied

Shower Type	Default Flow Rate (I/min)
Vented Hot Water System	7
Vented Hot Water System + Pump	12
Unvented Hot Water System	11
Instantaneous Electric Shower	01
Notes	

1. Instantaneous electric showers have only a cold water feed, so use no hot water

Water heating – Entering showers in DEAP

3. Is there a flow restrictor present? – yes or no

	ls flow rate known	Type of System	Flow Restrictor	Known Flow Rate Vmin	Flow Rate Vmin	1
Shower 1	Yes	Vented hot water system + pump	Yes	6	6	
Shower 2	No	Vented hot water system + pump	Yes		6	
Shower 3	No	Vented hot water system	No		7	
Shower 4	No	Unvented hot water system	No		11	
Shower 5	No	Vented hot water system + pump	No		12	
						Γ

Water Heating – Entering showers in DEAP

3. Is there a flow restrictor present?

Flow Restrictor?	Notes
Yes	Permanent flow restrictor installed (requiring use of tools to remove)
	Where flow rate is known - enter flow rate with restrictor (min flow rate in DEAP = 6 l/min)
	Where flow rate is unknown – default flow rate reduced to 6 l/min for all shower types
	Evidence = technical data sheet for shower or photo if visible
No	Default

Water Heating – Entering showers in DEAP

Instantaneous Electric Shower

- Don't use any hot water they only have a cold water feed
- The significant amount of electricity they use is accounted for in DEAP

Electricity for pumps and fans and electric keep-hot facility				
	[kWh/y]			
Heating system	175			
Keep-hot facility of a combi boiler	0			
Ventilation system	0			
Solar water heating pump	0			
Electric Shower	117			
Total	292			

• Also affects the heat gain calculation in DEAP

Water Heating – Bath in dwelling

- The amount of hot water used in baths depends on
 - no. of occupants (floor area) & adjusted to account for a shower if present

V_{d,bath} = DHW used per bath * the number of baths per day

Is a Bath present within Dwelling		Yes	No	<u> </u>		
						T
Hot Water	Usage fro	om Showers				
	No of Show	wers Taken		1.72	2.21	1

Water Heating – Volume of hot water required for other uses

• The remaining hot water use is calculated as a simple function of the number of occupants, N.

```
V_{d,average} (litres/day) = V_{d,shower} + V_{d,bath} + V_{d,other}
```

 $V_{d.other}$ (litres/day) = 9.8 N + 14

Hot water energy requirement at taps (kWh/y)

- Use a heat exchanger to recover heat from waste warm water to pre-heat the cold water feed of a shower
- The energy recovered depends on
 - the number and type of systems that are installed.

			PCDB characteristics			
	Associated with	Waste Water Heat Recovery Present	Efficiency, n	Utilisation factor, UF		
WWHR1	Shower 1	Yes	0.376	0.979		
1404/000	Shower 2	No				

- 2 product specific parameters taken from the Product Characteristics Database (PCDB):
- The unit's heat recovery efficiency
- A utilisation factor taking account of unrecoverable heat at the beginning and end of shower events.

• Input efficiency (%) & utilisation factor from Product Characteristics Database

WWHRS installed?	Notes
Yes	Evidence = technical data sheet, design/ as-built specification and drawings
	Efficiency & UF from PCDB
No	Default

Water Heating – reduced water consumption (target ≤ 125 l/p/d

• Where the design of the system reduces overall water consumption within the dwelling, the methodology will allow the benefits to be accounted for in the Hot Water Energy Demand.

ls	water use target (I	not and cold) 125 l/p/c	3	No	-	

Water consumption ≤ 125 l/p/day	Notes
Yes	The overall water consumption to be calculated in line with the "The water efficiency calculation methodology" to be developed by SEAI
	Evidence = Specification of water usage devices, calculations, manufacturer's product information
No	Default

Water Heating – collecting the data

• Survey form updated to include record of shower & bath details

Cylinder volume/almension	s does not include	insulation ti	hickness	storage is outdoors	contair	ed within	separate cylinder	
Supplementary Summe	r Hot Water				888			
							orientation	tilt
not applicable	electric he	ater presen	t for supplementar	y hot water heating"	Solaria	onol moko	and model:	
	main water here	ronne ene L Hisairs Yolo	etric Son DEAF mai	sual	Solar p	Aner mane	and model.	
Connents on water h	eating system			Sh	owers a	nd baths	5	
		В	ath in dwelling (y/n)? 🗌 is water (use target	(hot and c	old) 125 l/p/d (y/n):	?
				Type of system				WWHR efficiency
		Shaue	Is flow rate	(vented? Pumped?	Flow res	strictor?	Flow rate	and utilisation
		r #	known? (y/n)	Electric? Mixer?)	í Vi	(n) —	(if known)?	factor
		1						
		2						
		3						
		- 4						
		5						
		Heatin	g system (C	controls)				
Heating Controls (tick	all that Unde	rfloor he	ating (UFH)		Pum	ps		
no controls	in i	insulated tin	nber floor 🗌 wh	ole house UFH		How man	y central heating pu	mps for space heating?
programmer / timeclock	in :	screed	Partial UFH	including living area			Central heatin	q pump(s) outdoors
room thermostat num	be in	concrete	Partial UFH	not including living	area	How man	y oil boiler fuel pum	ps?
TRV's ×rads with TRVs							Oil fu	el pump(s) outdoors 🗌

Water Heating – impact of changes

• Part L compliance – Water heating demand impacts EPC / CPC

	Reference Dwelling
No. of showers	Same as actual dwelling
Bath in dwelling	Same as actual dwelling
Shower type	Vented hot water system + pump (12 l/min)
Flow restrictor	None
WWHR	None
Water consumption	Greater than 125 l/p/d

Water Heating – Impact of changes

• Two homes which currently have the same BER but have different shower types, will have

different ratings in future

Hot water energy requirement at taps

Lighting

Lighting – Changes to lighting demand calculation

Portable Lighting:

• Efficiency improved based on UK Household Electricity Survey

Fixed lighting:

- Lighting Design Known: input wattage and efficacy based on design of the installed lighting
- Lighting Design Unknown: the assessor enters no. of each lamp type

Lighting – Changes to lighting demand calculation

Benefits:

- Takes account of different lighting designs
- Takes account of new high performance light fittings, such as LEDs
- Where lighting is overdesigned, the additional energy use is accounted for
- Where lighting is under-designed, the lighting is supplemented with portable lighting, therefore encouraging adequate lighting to be designed.

Lighting – Changes to lighting demand calculation

IS LI	ghting	Design Ki	nown	Yes	or	No		•	
lf Ye	s,								
Lam	מו	Lamp Power (Watts)	Is lamp efficacy known	Type of Lamp	Lumen /Watt	Lumen /Watt	Lumen		
	1		No	Linear flourescent		80.5	0		
	2		No	LEDs/ CFL		66.9	0		
	3		No	Halogen LV		26.1	0		yes
	4		No	Halogen lamps		15.7	0		
	5		No	Incandescent		11.2	0		
		0				CLfixed	0	Im	
lf No),								
	,	Lamp	No of Lamps	Type of Lamp	Lumen /Watt				
		1		Linear flourescent	80.5				
		2		LEDs/ CFL	66.9				
				University (26.1				no
		3		Halogen LV	20.1				
		3 4		Halogen LV Halogen lamps	15.7				
		3 4 5		Halogen LV Halogen lamps Incandescent	15.7 11.2				

30

www.seai.ie

AUTHORITY

Lighting – Lighting Design Known

Input

- Enter Lamp Power in Watts
- Enter lamp efficacy in lumen/watt **if available** or default lumen/watt is applied

lf Yes,							
Lamp	Lamp Power (Watts)	ls lamp efficacy known	Type of Lamp	Lumen /Watt	Lumen /Watt	Lumen	
1	10	Yes	Linear flourescent	75	75	750	
2	10	No	LEDs/ CFL		66.9	669	
3		No	Halogen LV		26.1	0	
4		No	Halogen lamps		15.7	0	
5		No	Incandescent		11.2	0	
	20				CLfixed		Im

Lighting – Lighting Design Unknown (default)

Input

- Number of each bulb type
- Applies **default** lumen/watt based on lamp type

lf No,				
			Type of Lamp	Lumen
	Lamp	No of Lamps		/Watt
	1	1	Linear flourescent	80.5
	2	10	LEDs/ CFL	66.9
	3		Halogen LV	26.1
	4		Halogen lamps	15.7
	5	4	Incandescent	11.2
		15	Average Efficacy	52.9533

Lighting – Impacts of changes

• 100% CFLs/LEDs in 120 sqm dwelling

Ventilation

Ventilation – Changes to MVHR input

- Efficiency adjustment factor for MVHR systems where ductwork outside the insulated dwelling envelope is **uninsulated**.
- Reduces heat exchanger efficiency by 15% increases ventilation heat loss

anical ventilation, other than positive input ventilation from loft, has been selected above:			
Is measured "Appendix Q" data available?	Yes	1	
If yes			
Manufacturer and model			
How many wetrooms (including kitchen)? Is the ventilation ducting flexible/rigid/both?		Default	Value to be u
Specific fan power [W/(I/s)]	0.8	0.00	0.80
If balanced whole-house mechanical ventilation with heat recovery:			
Heat exchanger efficiency [%]	85	0	72
End if			
End if		Efficiency Adjustme	nt Factor
Is ducting insulated where outside of insulated dwelling envelope No	0	0.85	
Electricity for ventilation fans [kWh/y] 0			
Heat gains from ventilation fans [W] 0			
End if		Efficiency Adjustmen	t Factor

Ventilation – Changes to MVHR input

Ventilation Factors		
 draught lobby on main entrance	natural ventilation	
number of sides sheltered	positive input ventilation from loft	
	positive input ventilation from outside	
pressure test results available	whole house extract ventilation	
If yes, enter	balanced whole-house mechanical ventilation without heat recovery	
adjusted result (ac/h)	balanced whole-house mechanical ventilation with heat recovery	Record on survey form
	Ducting on MVHR system outside dwelling envelope insulated (yes, no, n/a)?	needra on sarvey form

Insulated ducting outside of thermal envelope	Notes
Yes	All of the duct system outside the dwelling envelope should be continuously insulated to a minimum depth of 25mm with thermal conductivity of 0.04 W/mK or less as required by the UK domestic ventilation compliance guide.
	Evidence = Confirm on site and/or confirmation from installer
No	Default
N/A	No ducting outside of thermal envelope

Renewable Energy Ratio

- Calculated in line with ISO 52000 ۲
- Included: ۲
 - PV
 - Solar
 - Wind
 - **Heat Pump**
 - **Biomass/Biogas**
 - **District heating**
 - CHP

- Key
- assessment boundary (use energy balance) а
- perimeter: on-site b
- perimeter: nearby С
- d perimeter: distant
- S1 thermally conditioned space
- S2 space outside thermal envelope

- PV, solar
- wind

1

2

5

- boiler room
- 3 4 heat pump

 - district heating/cooling
- 6 substation (low/medium voltage and possible storage)

 RER requirement of 0.20 or 20% will replace the existing requirement of 10 kWh/m²/yr contributing to the thermal load or 4 kWh/m²/y electrical

RER = <u>Primary Energy of the Renewables (Epren)</u>

Total Primary Energy (Eptot)

- **Epren** = sum of the delivered renewable energy multiplied by the renewable primary energy factor
- **Eptot** = sum of the total delivered energy multiplied by the renewable and non renewable primary energy factors.

PV Example	Delivered Energy	PEF	Primary Energy
Main space	3521	1.1	3873
Secondary space	770	1.1	847
Main water	2423	1.1	2665
Supplementary water	0	0	0
Pumps, fans & electric showers	130	2.08	270
Lighting	272	2.08	566
PV	- 1224	2.08	-2546
Total			5675

- Calculate electricity generated by the on-site PV, in kWh.
- Generated electricity is multiplied by the PEF of the PV to determine the total and renewable primary energy.

RER = Epren = 2546 kWh/yEptot = 5675 + 2546 = 8221 kWh/y = 0.31

Heat Pumps

- The environmental renewable contribution is calculated based on the
- Space Heating Demand and
- Hot Water Demand
- Demand provided by the heat pump minus the energy consumed by the heat pump

HP Example	Delivered Energy	PEF	Primary Energy
Main space	538	2.08	1119
Secondary space	447	1.1	492
Main water	949	2.08	1974
Pumps, fans & electric showers	175	2.08	364
Lighting	272	2.08	566
Total			4,515

HP Example	Heat Use	HP %	Elec. Use (Del. Energy)	Environmental Energy
Main space	2365	4.4	538	1827
Main water	2088	2.2	949	1139
Total				2966

RER = Epren = <u>2966 kWh/y</u> Eptot = 4515 + 2966 = 7481 kWh/y = 0.40

Questions?

If in doubt, check with the BER helpdesk Call: 1890 252 738 Email: registered@ber.seai.ie

